A method for determining the complete flow field around conical wings at supersonic/ hypersonic speeds

Author(s):  
E. BEEMAN ◽  
S. POWERS
Keyword(s):  
2018 ◽  
Vol 122 (1257) ◽  
pp. 1673-1696 ◽  
Author(s):  
M. Khalid ◽  
K. A. Juhany

ABSTRACTA numerical simulation has been carried out to investigate the effects of leading edge blowing upon heat alleviation on the surface of hypersonic vehicles. The initial phase of this work deals with the ability of the present CFD-based techniques to solve hypersonic flow field past blunt-nosed vehicles at hypersonic speeds. Towards this end, the authors selected three re-entry vehicles with published flow field data against which the present computed results could be measured. With increasing confidence on the numerical simulation techniques to accurately resolve the hypersonic flow, the boundary condition at the solid blunt surface was then equipped with the ability to blow the flow out of the solid boundary at a rate of at least 0.01–0.1 times the free stream (ρ∞u∞) mass flow rate. The numerical iterative procedure was then progressed until the flow at the surface matched this new ‘inviscid like’ boundary condition. The actual matching of the flow field at the ejection control surface was achieved by iterating the flow on the adjacent cells until the flow conformed to the conditions prescribed at the control surface. The conditions at the surface could be submitted as a ρ∞u∞at the surface or could be equipped as a simple static pressure condition providing the desired flow rate. The comparison between the present engineering approach and the experimental data presented in this study demonstrate its ability to solve complex problems in hypersonic.


Author(s):  
Vivek V. Kumar ◽  
Surendra Bogadi

In the present study computational tests were carried out to get an understanding of the flow field in a pure mixedcompression hypersonic inlet at a free stream Mach number of 7 and an altitude of 35km. Structured meshes have been used for depicting the motion of fluid inside the inlet. First, a grid has been selected after conducting a grid study. Two dimensional simulations were carried out with standard sst k-ω model using FLUENT. Computational results are compared with the available data. The results obtained from the computational tests revealed several important flow field details at hypersonic speeds. The basic shock structure inside the inlet was obtained. The boundary layer formed inner side of the engine had an adverse pressure gradient on the top ramp. Due to this the boundary layer thickens and the static pressure starts to decrease whose effect leads till the trailing edge of inlet. By providing small wedge shaped Micro-Vortex Generator (MVG) where the shockboundary layer occurs we can smooth the boundary layer formed inside the inlet. Thus there will be more efficient compression than the actual case. The results obtained in the present series of tests, could help the hypersonic inlet design optimization at offdesign condition


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


1994 ◽  
Vol 4 (4) ◽  
pp. 451-471 ◽  
Author(s):  
Nobuyuki Yatsuyanagi ◽  
Hiroshi Sakamoto ◽  
Kazuo Sato

Sign in / Sign up

Export Citation Format

Share Document