Investigation of unsteady flow through a transonic turbine stage. II- Data/prediction comparison for time-averaged and phase-resolved pressure data

Author(s):  
M. DUNN ◽  
W. BENNETT ◽  
R. DELANEY ◽  
K. RAO
1992 ◽  
Vol 114 (1) ◽  
pp. 91-99 ◽  
Author(s):  
M. G. Dunn ◽  
W. A. Bennett ◽  
R. A. Delaney ◽  
K. V. Rao

This paper presents time-averaged and phase-resolved measurements of the surface pressure data for the vane and blade of a transonic single-stage research turbine. The data are compared and contrasted with predictions from an unsteady Euler/Navier–Stokes code. The data were taken in a shock-tunnel facility in which the flow was generated with a short-duration source of heated and pressurized air. Surf ace-mounted high-response pressure transducers were used to obtain the pressure measurements. The turbine was operating at the design flow function, the design stage pressure ratio, and 100 percent corrected speed. A matrix of data was obtained at two vane exit conditions and two vane/rotor axial spacings.


Author(s):  
Can Ma ◽  
Xinrong Su ◽  
Xin Yuan

Unsteady blade row interactions considerably affect the performance of turbomachinery consisting of multiple blade rows. However, most aerodynamic optimizations of turbomachinery are based on mixing-plane steady flow simulations which cannot account for the unsteady effects of blade row interactions. In this work, the rotor of a two-dimensional transonic turbine stage is optimized using an in-house unsteady aerodynamic optimization system that allows for a more accurate modeling of the unsteady flow features occurring in multi-row turbomachinery configurations. The gradients of the objective function and constraint to the design variables are efficiently calculated with the discrete adjoint method. In the developed adjoint-based unsteady aerodynamic optimization system, the unsteady Reynolds-Averaged Navier-Stokes equations are solved using the harmonic balance method with an in-house code. The adjoint equations are derived by hand from the discrete form of the unsteady flow equations. The present results demonstrate the efficiency and capability of the unsteady aerodynamic optimization system for turbomachinery with multiple blade rows.


2000 ◽  
Vol 123 (1) ◽  
pp. 81-89 ◽  
Author(s):  
R. De´nos ◽  
T. Arts ◽  
G. Paniagua ◽  
V. Michelassi ◽  
F. Martelli

The paper focuses on the unsteady pressure field measured around the rotor midspan profile of the VKI Brite transonic turbine stage. The understanding of the complex unsteady flow field is supported by a quasi-three-dimensional unsteady Navier–Stokes computation using a k-ω turbulence model and a modified version of the Abu-Ghannam and Shaw correlation for the onset of transition. The agreement between computational and experimental results is satisfactory. They both reveal the dominance of the vane shock in the interaction. For this reason, it is difficult to identify the influence of vane-wake ingestion in the rotor passage from the experimental data. However, the computations allow us to draw some useful conclusions in this respect. The effect of the variation of the rotational speed, the stator–rotor spacing, and the stator trailing edge coolant flow ejection is investigated and the unsteady blade force pattern is analyzed.


2013 ◽  
Vol 03 (04) ◽  
pp. 252-260 ◽  
Author(s):  
Sławomir Dykas ◽  
Włodzimierz Wróblewski ◽  
Dawid Machalica

Author(s):  
R. Dénos ◽  
T. Arts ◽  
G. Paniagua ◽  
V. Michelassi ◽  
F. Martelli

The paper focuses on the unsteady pressure field measured around the rotor mid-span profile of the VKI Brite transonic turbine stage. The understanding of the complex unsteady flow field is supported by a quasi-3D unsteady Navier-Stokes computation using a k-? turbulence model and a modified version of the Abu-Ghannam and Shaw correlation for the onset of transition. The agreement between computational and experimental results is satisfactory. They both reveal the dominance of the vane-shock in the interaction. For this reason, it is difficult to identify the influence of vane-wake ingestion in the rotor passage from the experimental data. However, the computations allow to draw some useful conclusions in this respect. The effect of the variation of the rotational speed, the stator-rotor spacing and the stator trailing edge coolant flow ejection is investigated and the unsteady blade force pattern is analyzed.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
A. de la Loma ◽  
G. Paniagua ◽  
D. Verrastro ◽  
P. Adami

This paper reports the external convective heat transfer distribution of a modern single-stage transonic turbine together with the physical interpretation of the different shock interaction mechanisms. The measurements have been performed in the compression tube test rig of the von Karman Institute using single- and double-layered thin film gauges. The three pressure ratios tested are representative of those encountered in actual aeroengines, with M2,is ranging from 1.07 to 1.25 and a Reynolds number of about 106. Three different rotor blade heights (15%, 50%, and 85%) and the stator blade at midspan have been investigated. The measurements highlight the destabilizing effect of the vane left-running shock on the rotor boundary layer. The stator unsteady heat transfer is dominated by the fluctuating right-running vane trailing edge shock at the blade passing frequency.


Author(s):  
P. Gaetani ◽  
G. Persico ◽  
V. Dossena ◽  
C. Osnaghi

An extensive experimental analysis was carried out at Politecnico di Milano on the subject of unsteady flow in high pressure (HP) turbine stages. In this paper the unsteady flow measured downstream of a modern HP turbine stage is discussed. Traverses in two planes downstream of the rotor are considered and, in one of them, the effects of two very different axial gaps are investigated: the maximum axial gap, equal to one stator axial chord, is chosen to “switch off” the rotor inlet unsteadiness, while the nominal gap, equal to 1/3 of the stator axial chord, is representative of actual engines. The experiments were performed by means of a fast-response pressure probe, allowing for two-dimensional phase-resolved flow measurements in a bandwidth of 80 kHz. The main properties of the probe and the data processing are described. The core of the paper is the analysis of the unsteady rotor aerodynamics; for this purpose, instantaneous snapshots of the rotor flow in the relative frame are used. The rotor mean flow and its interaction with the stator wakes and vortices are also described. In the outer part of the channel only the rotor cascade effects can be observed, with a dominant role played by the tip-leakage flow and by the rotor tip passage vortex. In the hub region, where the secondary flows downstream of the stator are stronger, the persistence of stator vortices is slightly visible in the maximum stator-rotor axial gap configuration, while in the minimum stator-rotor axial gap configuration the interaction with the rotor vortices dominates the flow field. A fair agreement with the wakes and vortices transport models has been achieved. A discussion of the interaction process is reported giving particular emphasis to the effects of the different cascade axial gaps. Some final considerations on the effects of the different axial gap over the stage performances are reported.


Author(s):  
Michele Vascellari ◽  
Re´my De´nos ◽  
Rene´ Van den Braembussche

In transonic turbine stages, the exit static pressure field of the vane is highly non-uniform in the pitchwise direction. The rotor traverses periodically this non-uniform field and large static pressure fluctuations are observed around the rotor section. As a consequence the rotor blade is submitted to significant variations of its aerodynamic force. This contributes to the high cycle fatigue and may result in unexpected blade failure. In this paper an existing transonic turbine stage section is redesigned in the view of reducing the rotor stator interaction, and in particular the unsteady rotor blade forcing. The first step is the redesign of the stator blade profile to reduce the stator exit pitchwise static pressure gradient. For this purpose, a procedure using a genetic algorithm and an artificial neural network is used. Next, two new rotor profiles are designed and analysed with a quasi 3D Euler unsteady solver in order to investigate their receptivity to the shock interaction. One of the new profiles allows reducing the blade force variation by 50%.


Sign in / Sign up

Export Citation Format

Share Document