High efficiency detonation internal combustion engine (DICE)

Author(s):  
ERIC LOTH ◽  
JOHN LOTH ◽  
FRANK LOTH
2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 35-35
Author(s):  
Rob Braun ◽  
Gus Floerchinger ◽  
David Wahlstrom ◽  
Neal P. Sullivan ◽  
Tyrone Vincent ◽  
...  

1999 ◽  
Vol 65 (636) ◽  
pp. 2929-2936 ◽  
Author(s):  
Ryozo ECHIGO ◽  
Motohiro SAITO ◽  
Hideo YOSHIDA ◽  
Kenichi P. KOBAYASHI

2021 ◽  
Vol 1 (2) ◽  
pp. 101-112
Author(s):  
A.V. Shabanov ◽  
◽  
D.V. Kondratiev ◽  
V.K. Vanin ◽  
A.Yu. Dunin ◽  
...  

The most effective method of reducing nitrogen oxides in diesel exhaust gas is selective purifica-tion by the SCR-NH3 method. The method uses ammonia released during thermolysis and hydroly-sis of a urea solution when it is injected through a nozzle into a neutralizer. This method has a rela-tively low efficiency of cleaning the exhaust gas from nitrogen oxides. The main factor hindering the achievement of high efficiency of the NOx neutralization system is the insufficiently high tem-perature during the implementation of this process. The article analyzes various ways to increase the efficiency of the neutralization process and proposes a new method for neutralizing NOx by using urea injection into the cylinders of the inter-nal combustion engine at the expansion stroke in a diesel internal combustion engine. Efficiency can be achieved due to a higher exhaust gas temperature in the cylinder of the internal combustion engine and an increase in the time of the process of thermolysis and hydrolysis of urea. The kinetics of the decomposition of nitrogen oxides, the process of NH3 oxidation, and the cal-culation of temperature conditions in the cylinder of a diesel internal combustion engine at the ex-haust cycle are considered. The experience of neutralization of NOx contained in the flue gases of thermal power plants, where NOx purification takes place at high temperatures without the use of a catalyst, is analyzed. It is shown that the modernization of the SCR-NH3 process, due to the injection of urea at the exhaust stroke in a diesel internal combustion engine, will simplify the existing method of NOx neutralization and at the same time obtain additional advantages for a modern high-speed engine


2021 ◽  
Vol 18 (1) ◽  
pp. 12-29
Author(s):  
V. N. Kuznetsova ◽  
R. V. Romanenko

Introduction. The use of an electromechanical transmission in the design of a tracked vehicle allows an increase in the complex indicator of mobility, an increase in the range, fuel efficiency, maximum speed, a decrease in acceleration time, etc. The improvement of these indicators is achieved mainly due to the different performance characteristics of the internal combustion engine and the energy characteristics of electrical machines. The latter fact makes it possible to ensure the operation of the power plant of the tracked vehicle in such a way as to avoid unfavorable operating modes of both the internal combustion engine and the elements of the electromechanical transmission (a generator, a traction electric motor, an energy storage) from the point of view of energy efficiency, and to realize the high efficiency of the entire system.Research methods. To improve the mobility and implement a rational strategy for electromechanical transmission control, it is necessary to have an idea of the effective modes of operation of the main elements of the power plant. As a way to solve this problem it is proposed to study the energy characteristics of the main elements of an electromechanical transmission using the developed mathematical model for various modes of movement of a tracked vehicle.Results. Modeling the motion of a tracked vehicle with an electromechanical transmission makes it possible, in addition to determining the transmission parameters, to formulate preliminary requirements for its characteristics.Discussion and conclusion. To solve these problems, it is necessary to simulate the process of movement of a tracked vehicle, taking into account the initial data that are adequate to real operating conditions.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating ◽  
Andrew A. Pouring

Abstract Numerical simulation of flow, combustion phenomena and pollutants emission characteristics have been obtained on an homogeneous-charged internal combustion engine having conventional flat piston and five other bowl-in-piston geometries. The code employed here uses the time marching procedure and solves the governing partial differential equations of multi-component chemically reactive flow by finite difference method. The transient solution is marched out in a sequence of time steps. The results show that the piston geometry affects the local flame properties which subsequently influences the pollutants emission level. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2021 ◽  
Vol 103 (1) ◽  
pp. 221-230
Author(s):  
Rob Braun ◽  
Gus Floerchinger ◽  
David Wahlstrom ◽  
Neal P. Sullivan ◽  
Tyrone Vincent ◽  
...  

Author(s):  
Ashwani K. Gupta ◽  
Lu Jiang ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion phenomena and pollutants emission characteristics have been obtained on an internal combustion engine having conventional flat piston and advanced piston geometries. The code employed the time marching procedure that solves the governing partial differential equations of multi-component chemically reactive fluid flow by finite difference method. The transient solution is marched out in a sequence of time steps. The results show that both the piston geometry and inlet flow conditions affects the local flame properties which subsequently alters the pollutants emission levels. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for energy conservation and environmental pollution control.


Sign in / Sign up

Export Citation Format

Share Document