Time-marching dynamics analysis of fluid-coupled systems with large added mass using the Navier-Stokes equations

1994 ◽  
Author(s):  
Francois Belanger ◽  
Michael Paidoussis ◽  
Emmanuel De Langre
Author(s):  
T. Tanuma ◽  
N. Shibukawa ◽  
S. Yamamoto

An implicit time-marching higher-order accurate finite-difference method for solving the two-dimensional compressible Navier-Stokes equations was applied to the numerical analyses of steady and unsteady, subsonic and transonic viscous flows through gas turbine cascades with trailing edge coolant ejection. Annular cascade tests were carried out to verify the accuracy of the present analysis. The unsteady aerodynamic mechanisms associated with the interaction between the trailing edge vortices and shock waves and the effect of coolant ejection were evaluated with the present analysis.


2020 ◽  
Vol 67 ◽  
pp. 100-119 ◽  
Author(s):  
Laurent Boudin ◽  
Céline Grandmont ◽  
Bérénice Grec ◽  
Sébastien Martin ◽  
Amina Mecherbet ◽  
...  

In this paper, we propose a coupled fluid-kinetic model taking into account the radius growth of aerosol particles due to humidity in the respiratory system. We aim to numerically investigate the impact of hygroscopic effects on the particle behaviour. The air flow is described by the incompressible Navier-Stokes equations, and the aerosol by a Vlasov-type equation involving the air humidity and temperature, both quantities satisfying a convection-diffusion equation with a source term. Conservations properties are checked and an explicit time-marching scheme is proposed. Twodimensional numerical simulations in a branched structure show the influence of the particle size variations on the aerosol dynamics.


Author(s):  
Vaclav Slama ◽  
Bartolomej Rudas ◽  
Ales Macalka ◽  
Jiri Ira ◽  
Antonin Zivny

Abstract An advanced in-house procedure, which is based on a commercial numerical code, to predict a potential danger of unstalled flutter has been developed and validated. This procedure using a one way decoupled method and a full-scale time-marching 3D viscous model in order to obtain the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations in the time domain thus calculate an aerodynamic work and a damping ratio is used as an essential tool for developing ultra-long last stage rotor blades in low pressure turbine parts for modern steam turbines with a large operating range and an enhanced efficiency. An example is shown on a development of the last stage blade for high backpressures.


Author(s):  
Dominique Legendre ◽  
Catherine Colin ◽  
Typhaine Coquard

The three-dimensional flow around a hemispherical bubble sliding and growing on a wall in a viscous linear shear flow is studied numerically by solving the full Navier–Stokes equations in a boundary-fitted domain. The main goal of the present study is to provide a complete description of the forces experienced by the bubble (drag, lift and added mass) over a wide range of sliding and shear Reynolds numbers (0.01≤ Re b , Re α ≤2000) and shear rate (0≤ Sr ≤5). The drag and lift forces are computed successively for the following situations: an immobile bubble in a linear shear flow; a bubble sliding on the wall in a fluid at rest; and a bubble sliding in a linear shear flow. The added-mass force is studied by considering an unsteady motion relative to the wall or a time-dependent radius.


2003 ◽  
Vol 125 (2) ◽  
pp. 308-314 ◽  
Author(s):  
C. Cravero ◽  
A. Satta

Turbomachinery flows can nowadays be investigated using several numerical techniques to solve the full set of Navier-Stokes equations; nevertheless the accuracy in the computation of losses is still a challenging topic. The paper describes a time-marching method developed by the authors for the integration of the Reynolds averaged Navier-Stokes equations in turbomachinery cascades. The attention is focused on turbine sections and the computed aerodynamic performances (outlet flow angle, profile loss, etc.,) are compared to experimental data and/or correlations. The need for this kind of CFD analysis tools is stressed for the substitution of standard correlations when a new blade is designed.


2014 ◽  
Vol 610 ◽  
pp. 60-64
Author(s):  
Rui Xi ◽  
Zhan Ling Ji ◽  
Hong Guang Jia ◽  
Qian Jin Xiao

A numerical method integrating computational fluid dynamics and computational structural dynamics for predicating wing flutter in time domain is described. A strong coupling employing the dual-time method is adopted. The Newmark algorithm is used to solve flutter equation in modal spaces while the finite-volume algorithm for the Navier-Stokes equations is used to solve the flow. The computed flutter boundaries of AGARD wing 445.6 for frees-tream Mach numbers ranging from 0.499 to 1.141 agree well with the experiment than using the DLM.


1988 ◽  
Vol 110 (3) ◽  
pp. 339-346 ◽  
Author(s):  
O. K. Kwon

A robust, time-marching Navier–Stokes solution procedure based on the explicit hopscotch method is presented for solution of steady, two-dimensional, transonic turbine cascade flows. The method is applied to the strong conservation form of the unsteady Navier–Stokes equations written in arbitrary curvilinear coordinates. Cascade flow solutions are obtained on an orthogonal, body-conforming “O” grid with the standard k–ε turbulence model. Computed results are presented and compared with experimental data.


Author(s):  
Stuart D. Connell ◽  
D. Graham Holmes ◽  
Mark E. Braaten

This paper presents a solution adaptive scheme for solving the Navier-Stokes equations on an unstructured mixed grid of triangles and quadrilaterals. The solution procedure uses an explicit Runge-Kutta finite volume time marching scheme with an adaptive blend of second and fourth order smoothing. The governing equations are solved in a 2D, axisymmetric or quasi-3D form. In viscous regions quadrilateral elements are used to facilitate the one dimensional refinement required for the efficient resolution of boundary layers and wakes. The effect of turbulence is incorporated through using either a Baldwin-Lomax or k-ε turbulence model. Solutions are presented for several examples that illustrate the capability of the algorithm to predict viscous phenomena accurately. The examples are a transonic turbine, a nozzle and a combustor diffuser.


1998 ◽  
Vol 4 (1) ◽  
pp. 25-33
Author(s):  
E. Y. K. Ng ◽  
Miao Yi

A better understanding of the flow inside the multi-stage turbomachines will be very useful to both the designer and operator. The numerical calculation for single blade row has been well established with the time marching computation of the Navier-Stokes equations. But there will exist much more difficulties for the multi-blade rows due to the rotor-stator interaction. The major problems are related to the unsteady flow which will inevitably exist in the blade passages due to the different rotating speed and possible the different in blade number. A method is presented for simulating various turbine blade rows in single-stage environment. A solver has been developed for studying the complex flow analysis of ‘proposed high pressure turbine’ (HPT) using quasi-3-D Reynolds-averaged Navier-Stokes (Q3D RNS) equations. The code achieves good quality solutions quickly even with relatively coarse mesh sizes. The work is first validated both with UTRC's and Zeschky and Gallus' subsonic turbine test cases covering inlet boundary conditions and Reynolds-averaged values. A H-type grid is adopted as it is easy to generate and can readily extend to 3D application. When rows are closely spaced, there can be a strong interaction which will impact the aerodynamic, thermal and structural performance of the blade.


Sign in / Sign up

Export Citation Format

Share Document