scholarly journals Computation of Q3D Viscous Flows in Various Annular Turbine Stages with Heat Transfer

1998 ◽  
Vol 4 (1) ◽  
pp. 25-33
Author(s):  
E. Y. K. Ng ◽  
Miao Yi

A better understanding of the flow inside the multi-stage turbomachines will be very useful to both the designer and operator. The numerical calculation for single blade row has been well established with the time marching computation of the Navier-Stokes equations. But there will exist much more difficulties for the multi-blade rows due to the rotor-stator interaction. The major problems are related to the unsteady flow which will inevitably exist in the blade passages due to the different rotating speed and possible the different in blade number. A method is presented for simulating various turbine blade rows in single-stage environment. A solver has been developed for studying the complex flow analysis of ‘proposed high pressure turbine’ (HPT) using quasi-3-D Reynolds-averaged Navier-Stokes (Q3D RNS) equations. The code achieves good quality solutions quickly even with relatively coarse mesh sizes. The work is first validated both with UTRC's and Zeschky and Gallus' subsonic turbine test cases covering inlet boundary conditions and Reynolds-averaged values. A H-type grid is adopted as it is easy to generate and can readily extend to 3D application. When rows are closely spaced, there can be a strong interaction which will impact the aerodynamic, thermal and structural performance of the blade.

Author(s):  
Joachim Schettel ◽  
Martin Deckner ◽  
Klaus Kwanka ◽  
Bernd Lu¨neburg ◽  
Rainer Nordmann

The main goal of this paper is to improve identification methods for rotordynamic coefficients of labseals for turbines. This aim was achieved in joint effort of the Technische Universita¨t Mu¨nchen, working on experimental identification methods for rotordynamic coefficients, the University of Technology, Darmstadt, working on prediction methods, and Siemens AG, realizing the results. The paper focuses on a short comb-grooved labyrinth seal. Short labseals, amongst others the above mentioned comb-grooved labyrinth, were examined. by means of a very accurately measuring test rig. The rotor was brought into statically eccentric positions relative to the stator, in order to measure the circumferential pressure distribution as a function of pressure, rotating speed and entrance swirl. The data collected were used to validate results obtained with a numerical method. The theoretical approach is based on a commercial CFD tool, which solves the Navier Stokes equations using numerical methods. As a result, a detailed model of the flow within the test rig is produced. The efforts of computation here are greater than when compared with the likewise wide-spread Bulk flow models, however improved accuracy and flexibility is expected. As the validation of the model is successful, it could then be used to gain further insight in the flow within the seal, and to understand the results better. This showed that rotordynamic coefficients of labseals gained from different test rigs are not necessarily comparable.


2000 ◽  
Author(s):  
B. V. Rathish Kumar ◽  
T. Yamaguchi ◽  
H. Liu ◽  
R. Himeno

Abstract Unsteady flow dynamics in a doubly constricted vessel is analyzed by using a time accurate Finite Volume solution of three dimensional incompressible Navier-Stokes equations. Computational experiments are carried out for various values of Reynolds number in order to assess the criticality of multiple mild constrictions in series and also to bring out the subtle 3D features like vortex formation. Studies reveal that pressure drop across a series of mild constrictions can get physiologically critical. Further this pressure drop is found to be sensitive to the spacing between the constrictions and also to the oscillatory nature of the inflow profile.


Author(s):  
T. Tanuma ◽  
N. Shibukawa ◽  
S. Yamamoto

An implicit time-marching higher-order accurate finite-difference method for solving the two-dimensional compressible Navier-Stokes equations was applied to the numerical analyses of steady and unsteady, subsonic and transonic viscous flows through gas turbine cascades with trailing edge coolant ejection. Annular cascade tests were carried out to verify the accuracy of the present analysis. The unsteady aerodynamic mechanisms associated with the interaction between the trailing edge vortices and shock waves and the effect of coolant ejection were evaluated with the present analysis.


1987 ◽  
Vol 3 (5) ◽  
pp. 406-414 ◽  
Author(s):  
Roger L. Davis ◽  
Ron-Ho Ni ◽  
James E. Carter

1987 ◽  
Vol 109 (4) ◽  
pp. 345-352 ◽  
Author(s):  
M. Reggio ◽  
R. Camarero

A numerical procedure to solve three-dimensional incompressible flows in arbitrary shapes is presented. The conservative form of the primitive-variable formulation of the time-dependent Navier-Stokes equations written for a general curvilinear coordiante system is adopted. The numerical scheme is based on an overlapping grid combined with opposed differencing for mass and pressure gradients. The pressure and the velocity components are stored at the same location: the center of the computational cell which is used for both mass and the momentum balance. The resulting scheme is stable and no oscillations in the velocity or pressure fields are detected. The method is applied to test cases of ducting and the results are compared with experimental and numerical data.


2020 ◽  
Vol 67 ◽  
pp. 100-119 ◽  
Author(s):  
Laurent Boudin ◽  
Céline Grandmont ◽  
Bérénice Grec ◽  
Sébastien Martin ◽  
Amina Mecherbet ◽  
...  

In this paper, we propose a coupled fluid-kinetic model taking into account the radius growth of aerosol particles due to humidity in the respiratory system. We aim to numerically investigate the impact of hygroscopic effects on the particle behaviour. The air flow is described by the incompressible Navier-Stokes equations, and the aerosol by a Vlasov-type equation involving the air humidity and temperature, both quantities satisfying a convection-diffusion equation with a source term. Conservations properties are checked and an explicit time-marching scheme is proposed. Twodimensional numerical simulations in a branched structure show the influence of the particle size variations on the aerosol dynamics.


2020 ◽  
Vol 8 (6) ◽  
pp. 419 ◽  
Author(s):  
Yun-Ta Wu ◽  
Shih-Chun Hsiao

In this article, the interaction of solitary waves and a submerged slotted barrier is investigated in which the slotted barrier consists of three impermeable elements and its porosity can be determined by the distance between the two neighboring elements. A new experiment is conducted to measure free surface elevation, velocity, and turbulent kinetic energy. Numerical simulation is performed using a two-dimensional model based on the Reynolds-Averaged Navier-Stokes equations and the non-linear k-ɛ turbulence model. A detailed flow pattern is illustrated by a flow visualization technique. A laboratory observation indicates that flow separations occur at each element of the slotted barrier and the vortex shedding process is then triggered due to the complicated interaction of those induced vortices that further create a complex flow pattern. During the vortex shedding process, seeding particles that are initially accumulated near the seafloor are suspended by an upward jet formed by vortices interacting. Model-data comparisons are carried out to examine the accuracy of the model. Overall model-data comparisons are in satisfactory agreement, but modeled results sometimes fail to predict the positions of the induced vortices. Since the measured data is unique in terms of velocity and turbulence, the dataset can be used for further improvement of numerical modeling.


Author(s):  
Man-Woong Heo ◽  
Tae-Wan Seo ◽  
Chung-Suk Lee ◽  
Kwang-Yong Kim

This paper presents a parametric study to investigate the aerodynamic and aeroacoustic characteristics of a side channel regenerative blower. Flow analysis in the side channel blower was carried out by solving three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence closure. Aeroacoustic analysis was conducted by solving the variational formulation of Lighthill’s analogy on the basis of the aerodynamic sources extracted from the unsteady flow analysis. The height and width of the blade and the angle between inlet and outlet ports were selected as three geometric parameters, and their effects on the aerodynamic and aeroacoustic performances of the blower have been investigated. The results showed that the aerodynamic and aeroacoustic performances were enhanced by decreasing height and width of blade. It was found that angle between inlet and outlet ports significantly influences the aerodynamic and aeroacoustic performances of the blower due to the stripper leakage flow.


Author(s):  
Vaclav Slama ◽  
Bartolomej Rudas ◽  
Ales Macalka ◽  
Jiri Ira ◽  
Antonin Zivny

Abstract An advanced in-house procedure, which is based on a commercial numerical code, to predict a potential danger of unstalled flutter has been developed and validated. This procedure using a one way decoupled method and a full-scale time-marching 3D viscous model in order to obtain the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations in the time domain thus calculate an aerodynamic work and a damping ratio is used as an essential tool for developing ultra-long last stage rotor blades in low pressure turbine parts for modern steam turbines with a large operating range and an enhanced efficiency. An example is shown on a development of the last stage blade for high backpressures.


Sign in / Sign up

Export Citation Format

Share Document