Low cost, real-time simulation of an Unmanned Aerial Vehicle

1999 ◽  
Author(s):  
Michael Drews ◽  
Douglas Forman
2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Nariman Fouladinejad ◽  
Nima Fouladinejad ◽  
Mohamad Kasim Abdul Jalil ◽  
Jamaludin Mohd Taib

The development of complex simulation systems is extremely costly as it requires high computational capability and expensive hardware. As cost is one of the main issues in developing simulation components, achieving real-time simulation is challenging and it often leads to intensive computational burdens. Overcoming the computational burden in a multidisciplinary simulation system that has several subsystems is essential in producing inexpensive real-time simulation. In this paper, a surrogate-based computational framework was proposed to reduce the computational cost in a high-dimensional model while maintaining accurate simulation results. Several well-known metamodeling techniques were used in creating a global surrogate model. Decomposition approaches were also used to simplify the complexities of the system and to guide the surrogate modeling processes. In addition, a case study was provided to validate the proposed approach. A surrogate-based vehicle dynamic model (SBVDM) was developed to reduce computational delay in a real-time driving simulator. The results showed that the developed surrogate-based model was able to significantly reduce the computing costs, unlike the expensive computational model. The response time in surrogate-based simulation was considerably faster than the conventional model. Therefore, the proposed framework can be used in developing low-cost simulation systems while yielding high fidelity and fast computational output.


2020 ◽  
Vol 14 (9) ◽  
pp. 1679-1685
Author(s):  
Renan F. Bastos ◽  
Fernando B. Silva ◽  
Cassius R. Aguiar ◽  
Guilherme Fuzato ◽  
Ricardo Q. Machado

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2682
Author(s):  
Feng Leng ◽  
Chengxiong Mao ◽  
Dan Wang ◽  
Ranran An ◽  
Yuan Zhang ◽  
...  

Digital-physical hybrid real-time simulation (hybrid simulation) platform integrates the advantages of both digital simulation and physical simulation by combining the physical simulation laboratory and the real-time digital simulator. Based on a 400 V/50 kVA hybrid simulation platform with 500 kVA short-circuit capacity, the hybrid simulation methodology and a Hausdorff distance based accuracy evaluation method are proposed. The case validation of power system fault recurrence is performed through this platform, and the stability and accuracy are further validated by comparing the hybrid simulation waveform and field-recorded waveform and by evaluating the accuracy with the proposed error index. Two typical application scenarios in power systems are studied subsequently. The static var generator testing shows the hybrid simulation platform can provide system-level testing conditions for power electronics equipment conveniently. The low-voltage ride through standard testing of a photovoltaic inverter indicates that the hybrid simulation platform can be also used for voltage standard testing for various power system apparatus with low cost. With this hybrid simulation platform, the power system simulation and equipment testing can be implemented with many advantages, such as short period of modelling, flexible modification of parameter and network, low cost, and low risk. Based on this powerful tool platform, there will be more application scenarios in future power systems.


2020 ◽  
Vol 19 (6) ◽  
pp. 1871-1883 ◽  
Author(s):  
Bin Lei ◽  
Yali Ren ◽  
Ning Wang ◽  
Linsheng Huo ◽  
Gangbing Song

With the explosive development of the computer vision technology, more and more vision-based inspection methods enabled by unmanned aerial vehicle technologies have been researched on the crack inspection of the sundry concrete structures. However, because of the limitation of the low-cost unmanned aerial vehicle hardware, whose cost is around US$500, most of the vision-based methods are difficult to be implemented on the low-cost unmanned aerial vehicle for real-time crack inspection. To address this challenge, in this article, a new computationally efficient vision-based crack inspection method is designed and successfully implemented on a low-cost unmanned aerial vehicle. Furthermore, to reduce the acquired data samples, a new algorithm entitled crack central point method is designed to extract the effective information from the pre-processed images. The proposed vision-based crack detection method includes the following three major components: (1) the image pre-processing algorithm, (2) crack central point method, and (3) the support vector machine model–based classifier. To demonstrate the effectiveness of the new inspection method, a concrete structure inspection experiment is implemented. The experimental results indicate that this new method is able to accurately and rapidly inspect the cracks of concrete structure in real time. This new vision-based crack inspection method shows great promise for the practical application.


Sign in / Sign up

Export Citation Format

Share Document