Measurement of Correlation Between Flow Density, Velocity and Density*velocity2 with Far Field Noise in High Speed Jets

Author(s):  
Jayanta Panda ◽  
Richard Seasholtz ◽  
Kristie Elam
Author(s):  
Clifford A. Brown

Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet-Surface Interaction Tests are intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. The initial goal is to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet-surface interaction is creating additional noise, and (2) determine regions of interest for future, more detailed, tests. To meet these objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer and (2) as a reflecting surface on the opposite side of the jet from the observer. The surface length was varied between 2 and 20 jet diameters downstream of the nozzle exit. Similarly, the radial distance from the jet centerline to the surface face was varied between 1 and 16 jet diameters. Far-field and phased array noise data were acquired at each combination of surface length and radial location using two nozzles operating at jet exit conditions across several flow regimes: subsonic cold, subsonic hot, underexpanded, ideally expanded, and overexpanded supersonic. The far-field noise results, discussed here, show where the jet noise is partially shielded by the surface and where jet-surface interaction noise dominates the low frequency spectrum as a surface extends downstream and approaches the jet plume.


Author(s):  
Dean Long ◽  
Steven Martens

Model scale tests are conducted to assess the Noise/Performance trade for high speed jet noise reduction technologies. It is demonstrated that measuring the near field acoustic signature with a microphone array can be used to assess the far field noise using a procedure known as acoustic holography. The near field noise measurement is mathematically propagated producing an estimate of the noise level at the new location. Outward propagation produces an estimate of the far field noise. Propagation toward the jet axis produces the source distribution. Tests are conducted on convergent/divergent nozzles with three different area ratios, and several different chevron geometries. Noise is characterized by two independent processes: Shock cell noise radiating in the forward quadrant is produced when the nozzle is operated at non-ideally expanded conditions. Mach wave radiation propagates into the aft quadrant when the exhaust temperature is elevated. These results show good agreement with actual far field measurements from tests in the GE Cell 41 Acoustic Test Facility. Simultaneous performance measurement shows the change in thrust coefficient for different test conditions and configurations. Chevrons attached to the nozzle exit can reduce the noise by several dB at the expense of a minimal thrust loss.


2012 ◽  
Vol 226-228 ◽  
pp. 417-422
Author(s):  
Yi Gang Wang ◽  
Yang Yang ◽  
Jia Shun Yang ◽  
Zhi Gang Yang

This study is focused on the locomotive of high speed train. First, wind tunnel test is used to verify the credibility of numerical results. Then, in order to compare the difference of aerodynamic noise generated by different size locomotive, dimensionally similar models of 1/8th, 1/12th and 1/15th scale are studied by using numerical simulation, including stationary aerodynamic characteristics, fluctuation characteristics of unsteady flow, noise source distribution on surface and far-field noise spectral characteristics. Based on the result of pressure fluctuation, it is noted that the difference between 1/15th and 1/8th scale model is larger in individual parts, including the separation zone in the roof and the edge of window. In addition, according to the far-field noise calculation, the result of 1/12th scale model is better than 1/15th scale model. From the results mentioned above, 1/15th or much smaller scale model should not be used in wind tunnel test as possible.


Author(s):  
Dean Long ◽  
Steve Martens

Part I of this paper describes a methodology for assessing the far field jet noise from high speed exhaust nozzles using a microphone array in the near field of the exhaust plume. The near field noise measurement is mathematically propagated producing an estimate of the noise level at the new location. Outward propagation produces an estimate of the far field noise. Propagation toward the jet axis produces the source distribution. Part II described here provides a direct validation of this process using a generic CD nozzle in a facility where both the near field and the far field are measured simultaneously. Comparison of these data sets show good agreement over the typical operating range for this type of nozzle. The far field noise is characterized by two independent processes: Shock cell noise radiating in the forward quadrant is produced when the nozzle is operated at non-ideally expanded conditions. Mach wave radiation propagates into the aft quadrant when the exhaust temperature is elevated. Subsequent tests in an acoustically treated nozzle thrust stand demonstrate the value of the near field array allowing immediate feedback on the noise/performance tradeoff for high speed jet noise reduction technologies.


Author(s):  
Andrew L. Bodling ◽  
Anupam Sharma

A study was done to investigate how boundary layer tripping mechanisms can affect the ability of a permeable surface FW-H solver to predict the far field noise emanating from an airfoil trailing edge. The far field noise in a baseline airfoil as well as the baseline airfoil fitted with fin let fences was analyzed. Two numerical boundary layer tripping mechanisms were implemented. The results illustrated the importance of choosing a permeable integration surface that is outside any high frequency waves emanating from the trip region. The results also illustrated the importance of choosing a boundary layer tripping mechanism that minimizes any extraneous noise so that an integration surface can be taken close to the airfoil.


2021 ◽  
Vol 149 (3) ◽  
pp. 1772-1790
Author(s):  
Yaxi Peng ◽  
Apostolos Tsouvalas ◽  
Tasos Stampoultzoglou ◽  
Andrei Metrikine

Sign in / Sign up

Export Citation Format

Share Document