Development of Flowfield and Surface Heat-Transfer Measurement and Visualisation Techniques for Internal Rotating Cooling Flows in Gas Turbine Blades

Author(s):  
Hector Iacovides ◽  
Brian Launder ◽  
Dennis Cooper ◽  
Diamantis Kounadis
2021 ◽  
pp. 1-13
Author(s):  
Faisal Shaikh ◽  
Budimir Rosic

Abstract Gas turbine blades and vanes are typically manufactured with small clearances between adjacent vane and blade platforms, termed the midpassage gap. The midpassage gap reduces turbine efficiency and causes additional heat load into the vane platform, as well as changing the distribution of endwall heat transfer and film cooling. This paper presents a low-order analytical analysis to quantify the effects of the midpassage gap on aerodynamics and heat transfer, verified against an experimental campaign and CFD. Using this model, the effects of the gap can be quantified, for a generic turbine stage, based only on geometric features and the passage static pressure field. It is found that at present there are significant losses and a large proportion of heat load caused by the gap, but that with modified design this could be reduced to negligible levels. Cooling flows into the gap to prevent ingression are investigated analytically and with CFD. Recommendations are given for targets that turbine designers should work toward in reducing the adverse effects of the midpassage gap. A method to estimate the effect of gap flow is presented, so that for any machine the significance of the gap may be assessed.


Author(s):  
Faisal Shaikh ◽  
Budimir Rosic

Abstract Gas turbine blades and vanes are typically manufactured with small clearances between adjacent vane and blade platforms, termed the midpassage gap. The midpassage gap reduces turbine efficiency and causes additional heat load into the vane platform, as well as changing the distribution of endwall heat transfer and film cooling. This paper presents a low-order analytical analysis to quantify the effects of the midpassage gap on aerodynamics and heat transfer, verified against an experimental campaign and CFD. Using this model, the effects of the gap can be quantified, for a generic turbine stage, based only on geometric features and the passage static pressure field. It is found that at present there are significant losses and a large proportion of heat load caused by the gap, but that with modified design this could be reduced to negligible levels. Cooling flows into the gap to prevent ingression are investigated analytically and with CFD. Recommendations are given for targets that turbine designers should work toward in reducing the adverse effects of the midpassage gap. A method to estimate the effect of gap flow is presented, so that for any machine the significance of the gap may be assessed.


2009 ◽  
Vol 30 (13) ◽  
pp. 1077-1086 ◽  
Author(s):  
Peter Heidrich ◽  
Jens V. Wolfersdorf ◽  
Martin Schnieder

1986 ◽  
Vol 108 (1) ◽  
pp. 116-123 ◽  
Author(s):  
K. Rued ◽  
S. Wittig

The accurate prediction of heat transfer coefficients on cooled gas turbine blades requires consideration of various influence parameters. The present study continues previous work with special efforts to determine the separate effects of each of several parameters important in turbine flow. Heat transfer and boundary layer measurements were performed along a cooled flat plate with various freestream turbulence levels (Tu = 1.6−11 percent), pressure gradients (k = 0−6 × 10−6), and cooling intensities (Tw/T∞ = 1.0−0.53). Whereas the majority of previously available results were obtained from adiabatic or only slightly heated surfaces, the present study is directed mainly toward application on highly cooled surfaces as found in gas turbine engines.


1984 ◽  
Vol 106 (3) ◽  
pp. 619-627 ◽  
Author(s):  
J. C. Simonich ◽  
R. J. Moffat

An experimental heat transfer study on a concavely curved turbulent boundary layer has been performed. A new, instantaneous heat transfer measurement technique utilizing liquid crystals was used to provide a vivid picture of the local distribution of surface heat transfer coefficient. Large scale wall traces, composed of streak patterns on the surface, were observed to appear and disappear at random, but there was no evidence of a spanwise stationary heat transfer distribution, nor any evidence of large scale structures resembling Taylor-Gortler vortices. The use of a two-dimensional computation scheme to predict heat transfer rates in concave curvature regions seems justifiable.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Abdel Rahman Salem ◽  
Farah Nazifa Nourin ◽  
Mohammed Abousabae ◽  
Ryoichi S. Amano

Abstract Internal cooling of gas turbine blades is performed with the combination of impingement cooling and serpentine channels. Besides gas turbine blades, the other turbine components such as turbine guide vanes, rotor disks, and combustor wall can be cooled using jet impingement cooling. This study is focused on jet impingement cooling, in order to optimize the coolant flow, and provide the maximum amount of cooling using the minimum amount of coolant. The study compares between different nozzle configurations (in-line and staggered), two different Reynold's numbers (1500 and 2000), and different stand-off distances (Z/D) both experimentally and numerically. The Z/D considered are 3, 5, and 8. In jet impingement cooling, the jet of fluid strikes perpendicular to the target surface to be cooled with high velocity to dissipate the heat. The target surface is heated up by a direct current (DC) power source. The experimental results are obtained by means of thermal image processing of the captured infra-red (IR) thermal images of the target surface. Computational fluid dynamics (CFD) analysis were employed to predict the complex heat transfer and flow phenomena, primarily the line-averaged and area-averaged Nusselt number and the cross-flow effects. In the current investigation, the flow is confined along with the nozzle plate and two parallel surfaces forming a bi-directional channel (bi-directional exit). The results show a comparison between heat transfer enhancement with in-line and staggered nozzle arrays. It is observed that the peaks of the line-averaged Nusselt number (Nu) become less as the stand-off distance (Z/D) increases. It is also observed that the fluctuations in the stagnation heat transfer are caused by the impingement of the primary vortices originating from the jet nozzle exit.


Author(s):  
Yaping Ju ◽  
Yi Feng ◽  
Chuhua Zhang

Abstract Reynolds averaged Navier-Stokes model-based conjugate heat transfer method is popularly used in simulations and designs of internally cooled gas turbine blades. One of the important factors influencing its prediction accuracy is the choice of turbulence models for different fluid regions because the blade passage flow and internal cooling have considerably different flow features. However, most studies adopted the same turbulence models in passage flow and internal cooling. Another important issue is the comprehensive evaluation of the losses caused by flow and heat transfer for both fluid and solid regions. In this study, a RANS-based CHT solver for subsonic/transonic flows was developed based on OpenFOAM and validated and used to explore suitable RANS turbulence model combinations for internally cooled gas turbine blades. Entropy generation, able to weigh the losses caused by flow friction and heat transfer, was used in the analyses of two internally cooled vanes to reveal the loss mechanisms. Findings indicate that the combination of the k-? SST-?-Re? transition model for passage flow and the standard k-e model for internal cooling agreed best with measurement data. The relative error of vane dimensionless temperature was less than 3%. The variations of entropy generation with different internal cooling inlet velocities and temperatures indicate that reducing entropy generation was contradictory with enhancing heat transfer performance. This study, providing a reliable computing tool and a comprehensive performance parameter, has an important application value for the design of internally cooled gas turbine blades.


Sign in / Sign up

Export Citation Format

Share Document