Development and Testing of a Dexterous Manipulation Capability for Autonomous Undersea Vehicles

Author(s):  
Barrett Dillow ◽  
David Akin ◽  
Craig Carignan
Author(s):  
Venketesh N. Dubey ◽  
Richard M. Crowder

This paper presents a design for a reconfigurable packaging system that can handle cartons of different shape and sizes and is amenable to ever changing demands of packaging industries for perfumery and cosmetic products. The system takes structure of a multi-fingered robot hand, which can provide fine motions, and dexterous manipulation capability that may be required in a typical packaging-assembly line. The paper outlines advanced modeling and simulation undertaken to design the packaging system and discusses the experimental work carried out. The new packaging system is based on the principle of reconfigurability, that shows adaptability to simple as well as complex carton geometry. The rationale of developing such a system is presented with description of its human equivalent. The hardware and software implementations are also discussed together with directions for future research.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 966 ◽  
Author(s):  
Marco Costanzo ◽  
Giuseppe De Maria ◽  
Ciro Natale ◽  
Salvatore Pirozzi

This paper presents the design and calibration of a new force/tactile sensor for robotic applications. The sensor is suitably designed to provide the robotic grasping device with a sensory system mimicking the human sense of touch, namely, a device sensitive to contact forces, object slip and object geometry. This type of perception information is of paramount importance not only in dexterous manipulation but even in simple grasping tasks, especially when objects are fragile, such that only a minimum amount of grasping force can be applied to hold the object without damaging it. Moreover, sensing only forces and not moments can be very limiting to securely grasp an object when it is grasped far from its center of gravity. Therefore, the perception of torsional moments is a key requirement of the designed sensor. Furthermore, the sensor is also the mechanical interface between the gripper and the manipulated object, therefore its design should consider also the requirements for a correct holding of the object. The most relevant of such requirements is the necessity to hold a torsional moment, therefore a soft distributed contact is necessary. The presence of a soft contact poses a number of challenges in the calibration of the sensor, and that is another contribution of this work. Experimental validation is provided in real grasping tasks with two sensors mounted on an industrial gripper.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1317
Author(s):  
Alejandro Chacón ◽  
Pere Ponsa ◽  
Cecilio Angulo

In human–robot collaborative assembly tasks, it is necessary to properly balance skills to maximize productivity. Human operators can contribute with their abilities in dexterous manipulation, reasoning and problem solving, but a bounded workload (cognitive, physical, and timing) should be assigned for the task. Collaborative robots can provide accurate, quick and precise physical work skills, but they have constrained cognitive interaction capacity and low dexterous ability. In this work, an experimental setup is introduced in the form of a laboratory case study in which the task performance of the human–robot team and the mental workload of the humans are analyzed for an assembly task. We demonstrate that an operator working on a main high-demanding cognitive task can also comply with a secondary task (assembly) mainly developed for a robot asking for some cognitive and dexterous human capacities producing a very low impact on the primary task. In this form, skills are well balanced, and the operator is satisfied with the working conditions.


2021 ◽  
Vol 6 (51) ◽  
pp. eabc8801
Author(s):  
Youcan Yan ◽  
Zhe Hu ◽  
Zhengbao Yang ◽  
Wenzhen Yuan ◽  
Chaoyang Song ◽  
...  

Human skin can sense subtle changes of both normal and shear forces (i.e., self-decoupled) and perceive stimuli with finer resolution than the average spacing between mechanoreceptors (i.e., super-resolved). By contrast, existing tactile sensors for robotic applications are inferior, lacking accurate force decoupling and proper spatial resolution at the same time. Here, we present a soft tactile sensor with self-decoupling and super-resolution abilities by designing a sinusoidally magnetized flexible film (with the thickness ~0.5 millimeters), whose deformation can be detected by a Hall sensor according to the change of magnetic flux densities under external forces. The sensor can accurately measure the normal force and the shear force (demonstrated in one dimension) with a single unit and achieve a 60-fold super-resolved accuracy enhanced by deep learning. By mounting our sensor at the fingertip of a robotic gripper, we show that robots can accomplish challenging tasks such as stably grasping fragile objects under external disturbance and threading a needle via teleoperation. This research provides new insight into tactile sensor design and could be beneficial to various applications in robotics field, such as adaptive grasping, dexterous manipulation, and human-robot interaction.


10.5772/56479 ◽  
2013 ◽  
Vol 10 (10) ◽  
pp. 340 ◽  
Author(s):  
Anna Lisa Ciancio ◽  
Loredana Zollo ◽  
Gianluca Baldassarre ◽  
Daniele Caligiore ◽  
Eugenio Guglielmelli

1993 ◽  
Author(s):  
Kazuhiro Kosuge ◽  
Yoshio Fujisawa ◽  
Toshio Fukuda

Sign in / Sign up

Export Citation Format

Share Document