scholarly journals Flight Dynamic Stability of a Flapping Wing Micro Air Vehicle in Hover

Author(s):  
Weihua Su ◽  
Carlos Cesnik
Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 362
Author(s):  
Muhammad Yousaf Bhatti ◽  
Sang-Gil Lee ◽  
Jae-Hung Han

This paper proposes an approach to analyze the dynamic stability and develop trajectory-tracking controllers for flapping-wing micro air vehicle (FWMAV). A multibody dynamics simulation framework coupled with a modified quasi-steady aerodynamic model was implemented for stability analysis, which was appended with flight control block for accomplishing various flight objectives. A gradient-based trim search algorithm was employed to obtain the trim conditions by solving the fully coupled nonlinear equations of motion at various flight speeds. Eigenmode analysis showed instability that grew with the flight speed in longitudinal dynamics. Using the trim conditions, we linearized dynamic equations of FWMAV to obtain the optimal gain matrices for various flight speeds using the linear-quadratic regulator (LQR) technique. The gain matrices from each of the linearized equations were used for gain scheduling with respect to forward flight speed. The reference tracking augmented LQR control was implemented to achieve transition flight tracking that involves hovering, acceleration, and deceleration phases. The control parameters were updated once in a wingbeat cycle and were changed smoothly to avoid any discontinuities during simulations. Moreover, trajectories tracking control was achieved successfully using a dual loop control approach. Control simulations showed that the proposed controllers worked effectively for this fairly nonlinear multibody system.


ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 366-370 ◽  
Author(s):  
Pengcheng CHI ◽  
Weiping ZHANG ◽  
Wenyuan CHEN ◽  
Hongyi LI ◽  
Kun MENG ◽  
...  

2017 ◽  
Vol 10 (1) ◽  
pp. 70-84 ◽  
Author(s):  
Wenqing Yang ◽  
Liguang Wang ◽  
Bifeng Song

This paper describes the design and development of the Dove, a flapping-wing micro air vehicle (FWMAV), which was developed in Northwestern Polytechnical University. FWMAVs have attracted international attentions since the past two decades. Since some achievements have been obtained, such as the capability of supporting an air vehicle to fly, our research goal was to design an FWMAV that has the ability to accomplish a task. Main investigations were presented in this paper, including the flexible wing design, the flapping mechanism design, and the on-board avionics development. The current Dove has a mass of 220 g, a wingspan of 50 cm, and the ability of operating fully autonomously, flying lasts half an hour, and transmitting live stabilized color video to a ground station over 4 km away.


Sign in / Sign up

Export Citation Format

Share Document