Effect of Aspect Ratio on the Three-Dimensional Global Instability Analysis of Incompressible Open Cavity Flows

Author(s):  
Fernando Meseguer ◽  
Javier de Vicente ◽  
Eusebio Valero ◽  
Vassilios Theofilis
2014 ◽  
Vol 752 ◽  
pp. 219-236 ◽  
Author(s):  
F. Meseguer-Garrido ◽  
J. de Vicente ◽  
E. Valero ◽  
V. Theofilis

AbstractA theoretical study of linear global instability of incompressible flow over a rectangular spanwise-periodic open cavity in an unconfined domain is presented. Comparisons with the limited number of results available in the literature are shown. Subsequently, the parameter space is scanned in a systematic manner, varying Reynolds number, incoming boundary-layer thickness and length-to-depth aspect ratio. This permits documenting the neutral curves and leading eigenmode characteristics of this flow. Correlations constructed using the results obtained collapse all available theoretical data on the three-dimensional instabilities.


2014 ◽  
Vol 748 ◽  
pp. 189-220 ◽  
Author(s):  
J. de Vicente ◽  
J. Basley ◽  
F. Meseguer-Garrido ◽  
J. Soria ◽  
V. Theofilis

AbstractThree-dimensional instabilities arising in open cavity flows are responsible for complex broad-banded dynamics. Existing studies either focus on theoretical properties of ideal simplified flows or observe the final state of experimental flows. This paper aims to establish a connection between the onset of the centrifugal instabilities and their final expression within the fully saturated flow. To that end, a linear three-dimensional modal instability analysis of steady two-dimensional states developing in an open cavity of aspect ratio $L/D=2$ (length over depth) is conducted. This analysis is performed together with an experimental study in the same geometry adding spanwise endwalls. Two different Reynolds numbers are investigated through spectral analyses and modal decomposition. The physics of the flow is thoroughly described exploiting the strengths of each methodology. The main flow structures are identified and salient space and time scales are characterised. Results indicate that the structures obtained from linear analysis are mainly consistent with the fully saturated experimental flow. The analysis also brings to light the selection and alteration of certain wave properties, which could be caused by nonlinearities or the change of spanwise boundary conditions.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Taravat Khadivi ◽  
Eric Savory

The flow regimes associated with 2:1 aspect ratio elliptical planform cavities of varying depth immersed in a turbulent boundary layer at a Reynolds number of 8.7 × 104, based on the minor axis of the cavity, have been quantified from particle image velocimetry measurements and three-dimensional steady computational fluid dynamics simulations (Reynolds stress model closure). Although these elliptical cavity flows have some similarities with nominally two-dimensional and rectangular cases, three-dimensional effects due to the low aspect ratio and curvature of the walls give rise to features exclusive to low aspect ratio elliptical cavities, including formation of cellular structures at intermediate depths and vortex structures within and downstream of the cavity.


2014 ◽  
Vol 759 ◽  
pp. 546-578 ◽  
Author(s):  
J. Basley ◽  
L. R. Pastur ◽  
F. Lusseyran ◽  
J. Soria ◽  
N. Delprat

AbstractOpen cavity flows are known to select and enhance locked-on modes or tones. High-energy self-sustained oscillations arise within the shear layer, impinging onto the trailing edge of the cavity. These self-sustained oscillations are subject to amplitude modulations (AMs) at multiple low frequencies. However, only a few studies have addressed the identification of the lowest modulating frequencies. The present work brings to light salient AMs of the shear layer waves and identifies their source as three-dimensional dynamics existing inside the cavity. Indeed, the recirculating inner flow gives rise to centrifugal instabilities, which entail broad-band frequencies down two orders of magnitude lower than those of the self-sustained oscillations. Using time-resolved PIV (TRPIV) in two planes, the nonlinearly saturated dynamics is analysed in both space and time by means of proper orthogonal decomposition, global Fourier decomposition and Hilbert–Huang transforms. The inner flow can be decomposed as three-dimensional waves carried by the main recirculation. Bicoherence distributions are computed to highlight the nonlinear interactions between these spanwise-travelling waves inside the cavity and the locked-on modes. The modulated envelope of the shear layer oscillations is extracted and investigated with regards to the inner-flow dynamics. Strong cross-correlations, in time rather than in space, reveal a global coupling mechanism, possibly related to the beating of the spanwise-travelling waves.


2019 ◽  
Vol 863 ◽  
pp. 817-849 ◽  
Author(s):  
Kuchimanchi K. Bharadwaj ◽  
Debopam Das

The present study investigates the puffing behaviour of planar buoyant plumes by employing linear BiGlobal stability analysis and experiments. The BiGlobal instability characteristics of two-dimensional plumes have been explored using stability analysis and compared with the puffing behaviour of both rectangular plumes and square plumes obtained from experiments. In the parameter space investigated, which spans a Richardson number range $0.03<Ri<960$, instability analysis reveals that planar plumes exhibit BiGlobal instability only for varicose perturbations, while they remain stable for sinuous perturbations. The BiGlobal frequency and growth rates of the unstable varicose mode are used to obtain Strouhal number correlation and stability curves. An investigation into the effect of the spanwise wavenumber on BiGlobal instability indicates that planar plumes are more unstable to two-dimensional perturbations than to three-dimensional perturbations. An increase in the spanwise wavenumber tends to stabilize planar plumes without affecting their oscillation frequencies. Experiments suggest that the puffing frequencies in rectangular plumes closely follow the power law obtained from two-dimensional instability analysis while exhibiting a weaker dependence on inlet aspect ratio. To further explore the effect of aspect ratio on puffing behaviour, experiments have been carried out in plumes of aspect ratio 1, i.e. square plumes. Square plumes are found to be more stable and to exhibit higher puffing frequencies than rectangular plumes. The reasons for these differences in puffing dynamics between rectangular and square plumes have been explored from the phase-locked streamwise and spanwise flow visualizations. In addition to puffing, spanwise visualizations in both rectangular and square plumes show the presence of secondary flows at their corners, similar to their constant-density jet counterparts. Finally, from experiments, we deduced a new universal puffing frequency correlation with the hydraulic diameter as the length scale which eliminates the aspect ratio dependence, and is valid for both square and low-aspect-ratio rectangular plumes.


Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18311-18317 ◽  
Author(s):  
Yuan Gao ◽  
Yuanjing Lin ◽  
Zehua Peng ◽  
Qingfeng Zhou ◽  
Zhiyong Fan

Three-dimensional interconnected nanoporous structure (3-D INPOS) possesses high aspect ratio, large surface area, as well as good structural stability. Profiting from its unique interconnected architecture, the 3-D INPOS pseudocapacitor achieves a largely enhanced capacitance and rate capability.


Sign in / Sign up

Export Citation Format

Share Document