scholarly journals A Finite element-Multibody dynamics co-simulation methodology applied to FAST

Author(s):  
Vishvas S. Suryakumar ◽  
Thomas W. Strganac
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Lijun Zhang ◽  
Yongchao Dong ◽  
Dejian Meng ◽  
Wenbo Li

In recent years, the problem of automotive brake squeal during steering braking has attracted attention. Under the conditions of squealing, the loading of sprung mass is transferred, and lateral force is generated on the tire, resulting in stress and deformation of the suspension system. To predict the steering brake squeal propensity and explore its mechanism, we established a hybrid model of multibody dynamics and finite element methods to transfer the displacement values of each suspension connection point between two models. We successfully predicted the occurrence of steering brake squeal using the complex eigenvalue analysis method. Thereafter, we analyzed the interface pressure distribution between the pads and disc, and the results showed that the distribution grew uneven with an increase in the steering wheel angle. In addition, changes in the contact and restraint conditions between the pads and disc are the key mechanisms for steering brake squeal.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000094-000099 ◽  
Author(s):  
Laura Mirkarimi ◽  
Rajesh Katkar ◽  
Ron Zhang ◽  
Rey Co ◽  
Zhijun Zhao

We are developing a new solution for wide I/O package on package applications, which is Bond Via Array (BVA) technology. The prototype vehicle built in this study has 1020 I/O's at a pitch of 0.24 mm with a high aspect ratio of approximately 10:1 and is ≤1.4 mm tall. PoP applications require large bandwidth and thinner packages challenging package developers to address warpage control for high yield processes. The design optimization of this package was established through rigorous finite element analysis of materials selection and structural modifications. The simulation methodology was validated by measuring the warpage as a function of temperature for the experimental prototypes. The details for the simulation and verification processes for the wide I/O process will be discussed. The variation between finite element analysis predictions and the experimental builds was ~10%, which allowed us to complete package design optimization with our simulation tools. The prototype build includes a standard and a low CTE substrate.


2020 ◽  
Vol 16 (3) ◽  
Author(s):  
Alejandro Cosimo ◽  
Federico J. Cavalieri ◽  
Javier Galvez ◽  
Alberto Cardona ◽  
Olivier Brüls

Abstract The aim of this work is to extend the finite element multibody dynamics approach to problems involving frictional contacts and impacts. The nonsmooth generalized-α (NSGA) scheme is adopted, which imposes bilateral and unilateral constraints both at position and velocity levels avoiding drift phenomena. This scheme can be implemented in a general purpose simulation code with limited modifications of pre-existing elements. The study of the woodpecker toy dynamics sets up a good example to show the capabilities of the NSGA scheme within the context of a general finite element framework. This example has already been studied by many authors who generally adopted a model with a minimal set of coordinates and small rotations. It is shown that good results are obtained using a general purpose finite element code for multibody dynamics, in which the equations of motion are assembled automatically and large rotations are easily taken into account. In addition, comparing results between different models of the woodpecker toy, the importance of modeling large rotations and the horizontal displacement of the woodpecker's sleeve is emphasized.


Author(s):  
Daniel P. Nicolella ◽  
Barron Bichon ◽  
W. Loren Francis ◽  
Travis D. Eliason

It is widely accepted that the mechanical environment within the knee, or more specifically, increased or altered stresses or strains generated within the cartilage, is a leading cause of knee osteoarthritis (OA). However, a significant unfulfilled technological challenge in musculoskeletal biomechanics and OA research has been determining the dynamic mechanical environment of the cartilage (and other components) resulting from routine and non-routine physical movements. There are two methods of investigating musculoskeletal joint mechanics that have been used to date: 1) forward and inverse multibody dynamic simulations of human movement and 2) detailed quasi-static finite element modeling of individual joints. The overwhelming majority of work has been focused on musculoskeletal multibody dynamics modeling. This method, in combination with experimental motion capture and analysis, has been integral to understanding torques, muscle and ligament forces, and reaction forces occurring at the joint during activities such as walking, running, squatting, and jumping as well as providing key insights into musculoskeletal motor control schemes. However, multibody dynamics simulations do not allow for the detailed continuum level analysis of the mechanical environment of the cartilage and other knee joint structures (meniscus, ligaments, and underlying bone) within the knee during physical activities. This is a critical technology gap that is required to understand the relationship between functional or injurious loading of the knee and cartilage degradation. We have developed a detailed neuromuscularly activated dynamic finite element model of the human lower body and have used this model to simultaneously determine the dynamic muscle forces, joint kinematics, contact forces, and detailed (e.g., continuum) stresses and strains within the knee (cartilage, meniscus, ligaments, and bone) during several increasingly complex neuromuscularly controlled and actuated lower limb movements. Motion at each joint is controlled explicitly via deformable cartilage-to-cartilage surface contact at each articular surface (rather than idealized as simple revolute or ball and socket joints). The major muscles activating the lower limb are explicitly modeled with Hill-type active force generating springs using anatomical muscle insertion points and geometric wrapping. Muscle activation dynamics were determined via a constrained optimization scheme to minimize muscle activation energy. Time histories of the mechanical environment of all soft tissues within the knee are determined for a simulated leg extension.


Author(s):  
Marcello Berzeri ◽  
Marcello Campanelli ◽  
A. A. Shabana

Abstract In this investigation, the performance of two different large displacement finite element formulations in the analysis of flexible multibody systems is investigated. These are the incremental corotational procedure proposed by Rankin and Brogan [8] and the non-incremental absolute nodal coordinate formulation recently proposed [9]. It is demonstrated in this investigation that the limitation resulting from the use of the nodal rotations in the incremental corotational procedure can lead to simulation problems even when very simple flexible multibody applications are considered.


Author(s):  
You-Fang Lu ◽  
Zhao-Hui Qi ◽  
Bin Wang ◽  
Guan-Min Feng

Abstract A new kind of floating frame whose parameters do not appear in equations of motion as additional unknowns is defined. Numerical analysis of flexible multibody dynamics is much facilitated by using finite-element iteration of the corresponding equations based on this concept.


Sign in / Sign up

Export Citation Format

Share Document