Dynamic Modeling of Knee Mechanics

Author(s):  
Daniel P. Nicolella ◽  
Barron Bichon ◽  
W. Loren Francis ◽  
Travis D. Eliason

It is widely accepted that the mechanical environment within the knee, or more specifically, increased or altered stresses or strains generated within the cartilage, is a leading cause of knee osteoarthritis (OA). However, a significant unfulfilled technological challenge in musculoskeletal biomechanics and OA research has been determining the dynamic mechanical environment of the cartilage (and other components) resulting from routine and non-routine physical movements. There are two methods of investigating musculoskeletal joint mechanics that have been used to date: 1) forward and inverse multibody dynamic simulations of human movement and 2) detailed quasi-static finite element modeling of individual joints. The overwhelming majority of work has been focused on musculoskeletal multibody dynamics modeling. This method, in combination with experimental motion capture and analysis, has been integral to understanding torques, muscle and ligament forces, and reaction forces occurring at the joint during activities such as walking, running, squatting, and jumping as well as providing key insights into musculoskeletal motor control schemes. However, multibody dynamics simulations do not allow for the detailed continuum level analysis of the mechanical environment of the cartilage and other knee joint structures (meniscus, ligaments, and underlying bone) within the knee during physical activities. This is a critical technology gap that is required to understand the relationship between functional or injurious loading of the knee and cartilage degradation. We have developed a detailed neuromuscularly activated dynamic finite element model of the human lower body and have used this model to simultaneously determine the dynamic muscle forces, joint kinematics, contact forces, and detailed (e.g., continuum) stresses and strains within the knee (cartilage, meniscus, ligaments, and bone) during several increasingly complex neuromuscularly controlled and actuated lower limb movements. Motion at each joint is controlled explicitly via deformable cartilage-to-cartilage surface contact at each articular surface (rather than idealized as simple revolute or ball and socket joints). The major muscles activating the lower limb are explicitly modeled with Hill-type active force generating springs using anatomical muscle insertion points and geometric wrapping. Muscle activation dynamics were determined via a constrained optimization scheme to minimize muscle activation energy. Time histories of the mechanical environment of all soft tissues within the knee are determined for a simulated leg extension.

Author(s):  
Yinghu Peng ◽  
Duo Wai-Chi Wong ◽  
Yan Wang ◽  
Tony Lin-Wei Chen ◽  
Qitao Tan ◽  
...  

Flatfoot is linked to secondary lower limb joint problems, such as patellofemoral pain. This study aimed to investigate the influence of medial posting insoles on the joint mechanics of the lower extremity in adults with flatfoot. Gait analysis was performed on fifteen young adults with flatfoot under two conditions: walking with shoes and foot orthoses (WSFO), and walking with shoes (WS) in random order. The data collected by a vicon system were used to drive the musculoskeletal model to estimate the hip, patellofemoral, ankle, medial and lateral tibiofemoral joint contact forces. The joint contact forces in WSFO and WS conditions were compared. Compared to the WS group, the second peak patellofemoral contact force (p < 0.05) and the peak ankle contact force (p < 0.05) were significantly lower in the WSFO group by 10.2% and 6.8%, respectively. The foot orthosis significantly reduced the peak ankle eversion angle (p < 0.05) and ankle eversion moment (p < 0.05); however, the peak knee adduction moment increased (p < 0.05). The reduction in the patellofemoral joint force and ankle contact force could potentially inhibit flatfoot-induced lower limb joint problems, despite a greater knee adduction moment.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
David Leandro Dejtiar ◽  
Christine Mary Dzialo ◽  
Peter Heide Pedersen ◽  
Kenneth Krogh Jensen ◽  
Martin Kokholm Fleron ◽  
...  

Abstract Musculoskeletal (MS) models can be used to study the muscle, ligament, and joint mechanics of natural knees. However, models that both capture subject-specific geometry and contain a detailed joint model do not currently exist. This study aims to first develop magnetic resonance image (MRI)-based subject-specific models with a detailed natural knee joint capable of simultaneously estimating in vivo ligament, muscle, tibiofemoral (TF), and patellofemoral (PF) joint contact forces and secondary joint kinematics. Then, to evaluate the models, the predicted secondary joint kinematics were compared to in vivo joint kinematics extracted from biplanar X-ray images (acquired using slot scanning technology) during a quasi-static lunge. To construct the models, bone, ligament, and cartilage structures were segmented from MRI scans of four subjects. The models were then used to simulate lunges based on motion capture and force place data. Accurate estimates of TF secondary joint kinematics and PF translations were found: translations were predicted with a mean difference (MD) and standard error (SE) of 2.13 ± 0.22 mm between all trials and measures, while rotations had a MD ± SE of 8.57 ± 0.63 deg. Ligament and contact forces were also reported. The presented modeling workflow and the resulting knee joint model have potential to aid in the understanding of subject-specific biomechanics and simulating the effects of surgical treatment and/or external devices on functional knee mechanics on an individual level.


2021 ◽  
Author(s):  
Amir Esrafilian ◽  
Lauri Stenroth ◽  
Mika E Mononen ◽  
Paavo Vartiainen ◽  
Petri Tanska ◽  
...  

Joint tissue mechanics (e.g., stress and strain) are believed to have a major involvement in the onset and progression of musculoskeletal disorders, e.g., knee osteoarthritis (KOA). Accordingly, considerable efforts have been made to develop musculoskeletal finite element (MS-FE) models to estimate highly-detailed tissue mechanics that predict cartilage degeneration. However, creating such models is time-consuming and requires advanced expertise. This limits these complex, yet promising MS-FE models to research applications with few participants and making the models impractical for clinical assessments. Also, these previously developed MS-FE models are not assessed for any activities other than the gait. This study introduces and validates a semi-automated rapid state-of-the-art MS-FE modeling and simulation toolbox incorporating an electromyography (EMG) assisted MS model and a muscle-force driven FE model of the knee with fibril-reinforced poro(visco)elastic cartilages and menisci. To showcase the usability of the pipeline, we estimated joint- and tissue-level knee mechanics in 15 KOA individuals performing different daily activities. The pipeline was validated by comparing the estimated muscle activations and joint mechanics to existing experimental data. Also, to examine the importance of EMG-assisted MS analyses, results were compared against outputs from the same FE models but driven by static-optimization-based MS models. The EMG-assisted MS-FE pipeline bore a closer resemblance to experiments, compared to the static-optimization-based MS-FE pipeline. More importantly, the developed pipeline showed great potentials as a rapid MS-FE analysis toolbox to investigate multiscale knee mechanics during different activities of individuals with KOA.


Author(s):  
Joshua E. Johnson ◽  
Phil Lee ◽  
Terence E. McIff ◽  
E. Bruce Toby ◽  
Kenneth J. Fischer

Secondary osteoarthritis (OA) as a result of joint injury is a significant problem. For the wrist in particular, scapholunate dissociation, resulting from injury to the scapholunate interosseous ligament (SLIL), is a commonly occurring pathology. SLIL tears can lead to scapholunate joint instability due to abnormal motion and load transfer through multiple carpal joints. If left untreated, SLIL injury has been known to progress to scapholunate advanced collapse (or SLAC wrist) with radiocarpal OA [1]. While the pathomechanics leading to the onset of OA are not clearly understood, changes in kinematics and contact mechanics with injury are believed to be causative factors. Of particular importance are joint contact pressures and pressure distributions, which are considered to be important mechanical factors. Comparing changes in joint mechanics between normal and injured wrists may help us better understand the progression of OA and improve the efficacy of corrective measures. Several techniques exist to evaluate joint mechanics. Of these, 3D image-based computational modeling is very useful to determine in vivo joint mechanics. Finite element modeling (FEM) is the most common and widely used computational method because of the ability to obtain 3D stresses and strains, and due to software availability. Therefore the objective of this study was to compare radiocarpal joint mechanics (contact forces, contact areas, contact locations, peak and average contact pressures) from FEM between normal and injured wrists. We hypothesized that peak contact pressures and average contact pressures would be higher in the injured wrists.


Author(s):  
Theodoros Marinopoulos ◽  
Lorenzo Zani ◽  
Simin Li ◽  
Vadim V. Silberschmidt

Abstract Modern developments of biomedical applications demand a better understanding of mechanical behaviour of soft biological tissues. As human soft tissues demonstrate a significant structural and functional diversity, characterisation of their mechanical behaviour still remains a challenge. Limitations related with implementation of mechanical experiments on human participants lead to a use of finite-element models for analysis of mechanical responses of soft tissues to different loads. This study focuses on parameters of numerical simulation considered for modelling of indentation of a human lower limb. Assessment of the effect of boundary conditions on the model size shows that at a ratio of its length to the tissue’s thickness of 1.7 for the 3D model this effect vanishes. The numerical results obtained with models employing various sets of mechanical parameters of the first-order Ogden scheme were compared with original experimental data. Furthermore, high sensitivity of the resulting reaction forces to the indenting direction is demonstrated for cases of both linear and angular misalignments of the indenter. Finally, the effect of changes in material parameters and their domain on their contribution to the reaction forces is discussed with the aim to improve our understanding of mechanical behaviour of soft tissues based on numerical methods. The undertaken research with its results on minimal requirements for finite-element models of indentation of soft tissues can support inverse analysis of their mechanical properties and underpin orthopaedic and medical procedures.


2012 ◽  
Vol 36 (4) ◽  
pp. 405-414 ◽  
Author(s):  
Juan Fernando Ramírez ◽  
Jaime Andrés Vélez

Background: Many finite element investigations have been made in the field of lower limb prosthetics; however, friction between bone and soft tissues as a boundary condition has not been considered. Objectives: To establish whether the change in the contact boundary condition between bone and soft tissues in a transfemoral amputee affects the stress-strain state on the residual limb. Study Design: Finite element analysis comparison. Methods: Finite element models of four transfemoral amputees were developed. In these models the socket, soft tissues and femur were included and two simulations were made for each model, in one of them the interaction between bone and soft tissues was defined as tied (there is no relative displacement between surfaces) and in the other it was defined as a friction boundary condition. Results: The von Mises stress and strain peaks are higher when the friction definition is used than for tied contact definition. The distribution pattern of stresses and strains also change when the contact definition varies from tied to friction. Conclusions: It was concluded that the friction between bone and soft tissues have a significant impact on the results of finite element models of lower limb prosthetic systems, and therefore in its predictive capabilities. Clinical relevance Understanding the bone-soft tissue interaction can lead to more realistic and accurate finite element models used to predict the stress-strain state in the residual limb of prosthetic users and therefore predict the occurrence of deep tissue injuries.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Darryl G. Thelen ◽  
Kwang Won Choi ◽  
Anne M. Schmitz

This study introduces a framework for co-simulating neuromuscular dynamics and knee joint mechanics during gait. A knee model was developed that included 17 ligament bundles and a representation of the distributed contact between a femoral component and tibial insert surface. The knee was incorporated into a forward dynamics musculoskeletal model of the lower extremity. A computed muscle control algorithm was then used to modulate the muscle excitations to drive the model to closely track measured hip, knee, and ankle angle trajectories of a subject walking overground with an instrumented knee replacement. The resulting simulations predicted the muscle forces, ligament forces, secondary knee kinematics, and tibiofemoral contact loads. Model-predicted tibiofemoral contact forces were of comparable magnitudes to experimental measurements, with peak medial (1.95 body weight (BW)) and total (2.76 BW) contact forces within 4–17% of measured values. Average root-mean-square errors over a gait cycle were 0.26, 0.42, and 0.51 BW for the medial, lateral, and total contact forces, respectively. The model was subsequently used to predict variations in joint contact pressure that could arise by altering the frontal plane joint alignment. Small variations (±2 deg) in the alignment of the femoral component and tibial insert did not substantially affect the location of contact pressure, but did alter the medio-lateral distribution of load and internal tibia rotation in swing. Thus, the computational framework can be used to virtually assess the coupled influence of both physiological and design factors on in vivo joint mechanics and performance.


2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Kara B. Bellenfant ◽  
Gracie L. Robbins ◽  
Rebecca R. Rogers ◽  
Thomas J. Kopec ◽  
Christopher G. Ballmann

The purpose of this study was to investigate the effects of how limb dominance and joint immobilization alter markers of physical demand and muscle activation during ambulation with axillary crutches. In a crossover, counterbalanced study design, physically active females completed ambulation trials with three conditions: (1) bipedal walking (BW), (2) axillary crutch ambulation with their dominant limb (DOM), and (3) axillary crutch ambulation with their nondominant limb (NDOM). During the axillary crutch ambulation conditions, the non-weight-bearing knee joint was immobilized at a 30-degree flexion angle with a postoperative knee stabilizer. For each trial/condition, participants ambulated at 0.6, 0.8, and 1.0 mph for five minutes at each speed. Heart rate (HR) and rate of perceived exertion (RPE) were monitored throughout. Surface electromyography (sEMG) was used to record muscle activation of the medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) unilaterally on the weight-bearing limb. Biceps brachii (BB) and triceps brachii (TB) sEMG were measured bilaterally. sEMG signals for each immobilization condition were normalized to corresponding values for BW.HR (p < 0.001) and RPE (p < 0.001) were significantly higher for both the DOM and NDOM conditions compared to BW but no differences existed between the DOM and NDOM conditions (p > 0.05). No differences in lower limb muscle activation were noted for any muscles between the DOM and NDOM conditions (p > 0.05). Regardless of condition, BB activation ipsilateral to the ambulating limb was significantly lower during 0.6 mph (p = 0.005) and 0.8 mph (p = 0.016) compared to the same speeds for BB on the contralateral side. Contralateral TB activation was significantly higher during 0.6 mph compared to 0.8 mph (p = 0.009) and 1.0 mph (p = 0.029) irrespective of condition. In conclusion, limb dominance appears to not alter lower limb muscle activation and walking intensity while using axillary crutches. However, upper limb muscle activation was asymmetrical during axillary crutch use and largely dependent on speed. These results suggest that functional asymmetry may exist in upper limbs but not lower limbs during assistive device supported ambulation.


Sign in / Sign up

Export Citation Format

Share Document