Power Generation from Galloping-based Piezoaeroelastic Energy Harvesters for Different Cross-Section Geometries

Author(s):  
Abdessattar Abdelkefi ◽  
Yan Zhimiao ◽  
Muhammad R. Hajj
Author(s):  
Ian L. Cassidy ◽  
Jeffrey T. Scruggs ◽  
Sam Behrens

This study addresses the formulation of feedback controllers for stochastically-excited vibratory energy harvesters. Maximizing power generation from stochastic disturbances can be accomplished using LQG control theory, with the transducer current treated as the control input. For the case where the power flow direction is unconstrained, an electronic drive capable of extracting as well as delivering power to the transducer is required to implement the optimal controller. It is demonstrated that for stochastic disturbances characterized by second-order, bandpass-filtered white noise, energy harvesters can be passively tuned such that optimal stationary power generation only requires half of the system states for feedback in the active circuit. However, there are many applications where the implementation of a bi-directional power electronic drive is infeasible, due to the higher parasitic losses they must sustain. If the electronics are designed to be capable of only single-directional power flow (i.e., where the electronics are incapable of power injection), then these parasitics can be reduced significantly, which makes single-directional converters more appropriate at smaller power scales. The constraint on the directionality of power flow imposes a constraint on the feedback laws that can be implemented with such converters. In this paper, we present a sub-optimal nonlinear control design technique for this class of problems, which exhibits an analytically computable upper bound on average power generation.


Author(s):  
Aya Watanabe ◽  
Ryousuke Yuyama ◽  
Hiroshi Hosaka ◽  
Akira Yamashita

Abstract This paper describes a friction-driven gyro generator that works under arbitrary vibrations and generates more than 1 W of power. Vibrational generators are energy harvesters that convert environmental vibrations into electrical power via the inertial force of pendulums. In conventional generators that use simple vibration, the power is less than 10 mW for a wearable size because vibrations in the natural environment are as low as 1 Hz. Gyroscopic generators increase the inertial force by rotating a pendulum at high speed and creating a gyro effect. In this generator, a palm-size product that generates 0.1 W and weighs 280 g has already been commercialized, but this device operates only under a particular vibration that synchronizes rotor precession and stalls under random vibration. To solve this problem, in this research, two gimbals and a precession spring are introduced to support the rotor. We developed a prototype generator with straight tracks measuring 16 cm × 11 cm × 12 cm with a mass of 980 g. Under a vibration of 4 Hz and ±20 degrees, power generation of 1.6 W was confirmed. Next, a prototype circular track was made. Power generation of 0.2 W with a vibration of 1 Hz and ±90 degrees was confirmed. Finally, a simple formula to estimate the upper limit of the generation power is derived. It is suggested that the circular-type generator is suitable for low-frequency vibration and can generate twice the power of a straight-type generator.


Author(s):  
Yuyi Zhai ◽  
Zihang Ding ◽  
Yunjia Liu ◽  
Shaohua Jin ◽  
Liang Kang

Continuous energy supply is essential to spherical mobile robot in the Antarctic investigation. This paper puts forward energy harvesters that can generate electricity from the wind to achieve the long time and the long range exploration. The major contribution is to present the preliminary models of the energy harvester which uses the law of electromagnetic induction, and meanwhile the spatial structures about generating electricity are analyzed, and the influence of different structures on the power generation and efficiency will be obtained. In order to get the characteristics of power generation efficiency, this paper designs one element pipeline model and two element pipeline model, and then the motion of magnet in harvester will be simulated in different installed structures and wind speed. The varying rules of induced voltage are concluded at last. Finally, experiments are implemented based on the simulated model. The experimental results verify the dependability of different structural schemes of the robot and the validity of induced voltages’ varying rules. The results show that the induced electromotive force value obtained by the one element pipeline structure model is larger than the two element pipeline model, but the stability of the latter is better. Through the research in this paper, it can provide a basis for selecting a suitable spherical robot space structure according to the environmental conditions to improve the endurance.


Author(s):  
R. L. Harne ◽  
Chunlin Zhang ◽  
Bing Li ◽  
K. W. Wang

The high sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the vibration response decay and power generation of a bistable energy harvester when excited by an impulse. Enabling the prediction of time-varying snap-through dynamics, this new approach greatly extends the capabilities of the current averaging method when employed with the Jacobian elliptic functions. Comparison with values determined by the direct simulation of the governing equations shows that the analytically predicted average generated power is very accurate for a wide range of impulse strengths and load resistances. The analytical approach represents a great leap forward in the ever-expanding understanding of bistable vibration energy harvesters as implements to effectively capture and convert a wide range of excitation energies.


1984 ◽  
Vol 108 (1) ◽  
pp. 429-439 ◽  
Author(s):  
MICHIO HIRANO ◽  
LAWRENCE C. ROME

This study was performed to determine whether or not the power generated by frog muscles during maximal jumps increases two- to three-fold with a 10°C increase in temperature as it does in isolated preparations. We found that peak power increased 2.7-fold between 14 and 25°C, and then remained constant to 30°C. During jumps at 14 and 25°C, the extensor muscles of the legs appeared to generate the same power as the maximum power output found in isolated frog muscle preparations, thus suggesting that the total cross section of the extensors is active during maximal jumps. We also found that jump distance was linearly related to peak power generation.


Sign in / Sign up

Export Citation Format

Share Document