scholarly journals A Study on the Power Generation Capacity of Piezoelectric Energy Harvesters with Different Fixation Modes and Adjustment Methods

Energies ◽  
2016 ◽  
Vol 9 (2) ◽  
pp. 98 ◽  
Author(s):  
Zhixiang Li ◽  
Gongbo Zhou ◽  
Zhencai Zhu ◽  
Wei Li
Author(s):  
Xiaole Yu ◽  
Yudong Hou ◽  
Mupeng Zheng ◽  
Mankang Zhu

The utilization of relaxor-based ferroelectrics with high piezoelectricity is considered to be an effective way to enhance the power generation capacity of piezoelectric energy harvesters (PEHs). However, the severe depolarization...


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2770
Author(s):  
Hailu Yang ◽  
Qian Zhao ◽  
Xueli Guo ◽  
Weidong Zhang ◽  
Pengfei Liu ◽  
...  

Piezoelectric pavement energy harvesting is a technological approach to transform mechanical energy into electrical energy. When a piezoelectric energy harvester (PEH) is embedded in asphalt pavements or concrete pavements, it is subjected to traffic loads and generates electricity. The wander of the tire load and the positioning of the PEH affect the power generation; however, they were seldom comprehensively investigated until now. In this paper, a numerical study on the influence of embedding depth of the PEH and the horizontal distance between a tire load and the PEH on piezoelectric power generation is presented. The result shows that the relative position between the PEH and the load influences the voltage magnitude, and different modes of stress state change voltage polarity. Two mathematic correlations between the embedding depth, the horizontal distance, and the generated voltage were fitted based on the computational results. This study can be used to estimate the power generation efficiency, and thus offer basic information for further development to improve the practical design of PEHs in an asphalt pavement.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3815 ◽  
Author(s):  
Wang ◽  
Nabawy ◽  
Cioncolini ◽  
Revell

Tip masses are used in cantilevered piezoelectric energy harvesters to shift device resonance towards the required frequency for harvesting and to improve the electric power generation. Tip masses are typically in the form of concentrated passive weights. The aim of this study is to assess the inclusion of solar panels as active tip masses on the dynamics and power generation performance of cantilevered PVDF (polyvinylidene fluoride)-based vibration energy harvesters. Four different harvester geometries with and without solar panels are realized using off-the-shelf components. Our experimental results show that the flexible solar panels considered in this study are capable of reducing resonance frequency by up to 14% and increasing the PVDF power generated by up to 54%. Two analytical models are developed to investigate this concept; employing both an equivalent concentrated tip mass to represent the case of flexible solar panels and a distributed tip mass to represent rigid panels. Good prediction agreement with experimental results is achieved with an average error in peak power of less than 5% for the cases considered. The models are also used to identify optimum tip mass configurations. For the flexible solar panel model, it is found that the highest PVDF power output is produced when the length of solar panels is two thirds of the total length. On the other hand, results from the rigid solar panel model show that the optimum length of solar panels increases with the relative tip mass ratio, approaching an asymptotic value of half of the total length as the relative tip mass ratio increases significantly.


2016 ◽  
Vol 28 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Zhengbao Yang ◽  
Jean Zu ◽  
Jun Luo ◽  
Yan Peng

Piezoelectric energy harvesters have great potential for achieving inexhaustible power supply for small-scale electronic devices. However, the insufficient power-generation capability and the narrow working bandwidth of traditional energy harvesters have significantly hindered their adoption. To address these issues, we propose a nonlinear compressive-mode piezoelectric energy harvester. We embedded a multi-stage force amplification mechanism into the energy harvester, which greatly improved its power-generation capability. In this article, we describe how we first established an analytical model to study the force amplification effect. A lumped-parameter model was then built to simulate the strong nonlinear responses of the proposed energy harvester. A prototype was fabricated which demonstrated a superior power output of 30 mW under an excitation of 0.3 g ([Formula: see text] m/s2). We discuss at the end the effect of geometric parameters that are influential to the performance. The proposed energy harvester is suitable to be used in low-frequency weak-excitation environments for powering wireless sensors.


2019 ◽  
Vol 25 (18) ◽  
pp. 2409-2422 ◽  
Author(s):  
Majid Khazaee ◽  
Alireza Rezania ◽  
Lasse Rosendahl

Damping plays a critical role in power generation by piezoelectric energy harvesting, and yet there is a lack of sensitivity studies on different sources of damping. In this paper, two damping sources in unimorph piezoelectric energy harvesters, namely support loss and damage damping mechanisms, are experimentally investigated. Variations of the power generation are evaluated with respect to the sources of damping. Accordingly, the power generation model is developed according to the experimental results in this work and using a single degree of freedom analytical model. This study focuses on the debonding effect, as an internal damping source, and support loss, as a critical source of external energy dissipation. The results show that the debonding reduces the output power dramatically at resonance and, particularly, at anti-resonance frequencies. Moreover, investigation of the support loss shows that the material of clamp as well as installation torque have an impact on the support loss and, consequently, affect the output power.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Roja Esmaeeli ◽  
Haniph Aliniagerdroudbari ◽  
Seyed Reza Hashemi ◽  
Ashkan Nazari ◽  
Muapper Alhadri ◽  
...  

Intelligent tires can be used in autonomous vehicles to insure the vehicle safety by monitoring the tire and tire-road conditions using sensors embedded on the tire. These sensors and their wireless communication systems need to be powered by energy sources such as batteries or energy harvesters. The deflection of tires during rotation is an available and reliable source of energy for electric power generation using piezoelectric energy harvesters to feed tire self-powered sensors and their wireless communication systems. The aim of this study is to design, analyze, and optimize a rainbow-shaped piezoelectric energy harvester mounted on the inner layer of a pneumatic tire for providing enough power for microelectronics devices required for monitoring intelligent tires. It is shown that the designed piezoelectric energy harvester can generate sufficient voltage, power, and energy required for a tire pressure monitoring system (TPMS) with high data transmission speed or three TPMSs with average data transmission speed. The effect of the vehicle speed on the voltage and electric energy generated by the designed piezoelectric is also studied. The geometry and the circuit load resistance of the piezoelectric energy harvester are optimized in order to increase the energy harvesting efficiency. It is shown that the optimized rainbow piezoelectric energy harvester can reach the highest power generation among all the strain-based energy harvesters that partially cover the inner layer of the tire.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2171
Author(s):  
Hyeonsu Han ◽  
Junghyuk Ko

Along with the increase in renewable energy, research on energy harvesting combined with piezoelectric energy is being conducted. However, it is difficult to predict the power generation of combined harvesting because there is no data on the power generation by a single piezoelectric material. Before predicting the corresponding power generation and efficiency, it is necessary to quantify the power generation by a single piezoelectric material alone. In this study, the generated power is measured based on three parameters (size of the piezoelectric ceramic, depth of compression, and speed of compression) that contribute to the deformation of a single PZT (Lead zirconate titanate)-based piezoelectric element. The generated power was analyzed by comparing with the corresponding parameters. The analysis results are as follows: (i) considering the difference between the size of the piezoelectric ceramic and the generated power, 20 mm was the most efficient piezoelectric ceramic size, (ii) considering the case of piezoelectric ceramics sized 14 mm, the generated power continued to increase with the increase in the compression depth of the piezoelectric ceramic, and (iii) For piezoelectric ceramics of all diameters, the longer the depth of deformation, the shorter the frequency, and depending on the depth of deformation, there is a specific frequency at which the charging power is maximum. Based on the findings of this study, PZT-based elements can be applied to cases that receive indirect force, including vibration energy and wave energy. In addition, the power generation of a PZT-based element can be predicted, and efficient conditions can be set for maximum power generation.


2021 ◽  
pp. 0309524X2110227
Author(s):  
Kyle O Roberts ◽  
Nawaz Mahomed

Wind turbine selection and optimal hub height positioning are crucial elements of wind power projects. However, in higher class wind speeds especially, over-exposure of wind turbines can lead to a reduction in power generation capacity. In this study, wind measurements from a met mast were validated according to specifications issued by IRENA and NREL. As a first step, it is shown that commercial WTGs from a database may be matched to the wind class and turbulence intensity. Secondly, a wind turbine selection algorithm, based on maximisation of capacity factor, was implemented across the range of WTGs. The selected WTGs were further exposed to an iterative algorithm using pointwise air density and wind shear coefficients. It is shown that a unique maximum capacity factor, and hence wind power generation, exists for a wind turbine, premised on its eventual over-exposure to the wind resource above a certain hub height.


Sign in / Sign up

Export Citation Format

Share Document