Influence of Turbulence Intensity on Aerodynamic Characteristics of an NACA 0012 at Low Reynolds Numbers

Author(s):  
Takaaki Tsuchiya ◽  
Daiju Numata ◽  
Tetsuya Suwa ◽  
Keisuke Asai
Author(s):  
Rajesh Yadav ◽  
Aslesha Bodavula

Time accurate numerical simulations were conducted to investigate the effect of triangular cavities on the unsteady aerodynamic characteristics of NACA 0012 airfoil at a Reynolds number of 50,000. Right-angled triangular cavities are placed at 10%, 25% and 50% chord location on the suction and have depths of 0.025c and 0.05c, measured normal to the surface of the airfoil. The second-order accurate solution to the RANS equations is obtained using a pressure-based finite volume solver with a four-equation transition turbulence model, γ–Re θt, to model the effect of turbulence. The two-dimensional results suggest that the cavity of depth 0.025c at 10% chord improves the aerodynamic efficiency ( l/d ratio) by 52%, at an angle of attack of α = 8°, wherein the flow is steady. The shallower triangular cavity when placed at 25%c and 50%c enhances the l/d ratio by only 10% and 17%, respectively, in the steady-state regime of angles of attack between α = 6° and 10°. The deeper cavity also enhances the l/d ratio by up to 13%, 22% and 14% at angles of attack between α = 6° and 10°. Even in the unsteady vortex shedding regime, at α =12° and higher, significant improvements in the time-averaged l/d ratios are observed for both cavity depths. The improvements in l/d ratio in the steady-state, pre-stall regime are primarily because of drag reduction while in the post-stall, unsteady regime, the improvements are because of enhancements in time-averaged C l values. The current finding can thus be used to enhance the aerodynamic performance of MAVs and UAVs that fly at low Reynolds numbers.


2020 ◽  
Vol 10 (5) ◽  
pp. 1706 ◽  
Author(s):  
Yang Zhang ◽  
Zhou Zhou ◽  
Kelei Wang ◽  
Xu Li

A numerical study was conducted on the influence of turbulence intensity and Reynolds number on the mean topology and transition characteristics of flow separation to provide better understanding of the unsteady jet flow of turboelectric distributed propulsion (TeDP) aircraft. By solving unsteady Reynolds averaged Navier-Stokes (URANS) equation based on C-type structural mesh and γ - Re ˜ θ t transition model, the aerodynamic characteristics of the NACA0012 airfoil at different turbulence intensities was calculated and compared with the experimental results, which verifies the reliability of the numerical method. Then, the effects of varied low Reynolds numbers and turbulence intensities on the aerodynamic performance of NACA0012 and SD7037 were investigated. The results show that higher turbulence intensity or Reynolds number leads to more stable airfoil aerodynamic performance, larger stalling angle, and earlier transition with a different mechanism. The generation and evolution of the laminar separation bubble (LSB) are closely related to Reynolds number, and it would change the effective shape of the airfoil, having a big influence on the airfoil’s aerodynamic characteristics. Compared with the symmetrical airfoil, the low-Reynolds-number airfoil can delay the occurrence of flow separation and produce more lift in the same conditions, which provides guidance for further airfoil design under TeDP jet flow.


Author(s):  
Dongli Ma ◽  
Guanxiong Li ◽  
Muqing Yang ◽  
Shaoqi Wang

Laminar separation and transition have significant effects on aerodynamic characteristics of the wing under the condition of low Reynolds numbers. Using the flow control methods to delay and eliminate laminar separation has great significance. This study uses the method combined with water tunnel test and numerical calculation to research the effects of suction flow control on the flow state and aerodynamic force of the wing at low Reynolds numbers. The effects of suction flow rate and suction location on laminar separation, transition and aerodynamic performance of the wing are further researched. The results of the research show that, the suction can control laminar separation and transition effectively, when the suction holes are in the interior of the separation bubble, and close to the separation point, the suction has the best control effect. When the Reynolds number is Re = 3.0 × 105, the suction flow control can make the lift-to-drag ratio of the wing increase by 8.62%, and the aerodynamic characteristics of the wing are improved effectively.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


2012 ◽  
Vol 2012.18 (0) ◽  
pp. 587-588
Author(s):  
Tadateru ISHIDE ◽  
Kazuki SHIRASAWA ◽  
Shoichiro MIKAMI ◽  
Shota HAMAYAMA ◽  
Hiroki NAKAYAMA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document