Aerodynamic Characteristics of Airfoil with Thin Leading-Edge at Low Reynolds Numbers

2020 ◽  
Vol 68 (6) ◽  
pp. 232-240
Author(s):  
Masato Okamoto ◽  
Akira Shirakawa
2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


2019 ◽  
Vol 11 ◽  
pp. 175682931983367
Author(s):  
Carolyn M Reed ◽  
David A Coleman ◽  
Moble Benedict

This paper provides a fundamental understanding of the unsteady fluid-dynamic phenomena on a cycloidal rotor blade operating at ultra-low Reynolds numbers (Re ∼ 18,000) by utilizing a combination of instantaneous blade force and flowfield measurements. The dynamic blade force coefficients were almost double the static ones, indicating the role of dynamic stall. For the dynamic case, the blade lift monotonically increased up to ±45° pitch amplitude; however, for the static case, the flow separated from the leading edge after around 15° with a large laminar separation bubble. There was significant asymmetry in the lift and drag coefficients between the upper and lower halves of the trajectory due to the flow curvature effects (virtual camber). The particle image velocimetry measured flowfield showed the dynamic stall process during the upper half to be significantly different from the lower half because of the reversal of dynamic virtual camber. Even at such low Reynolds numbers, the pressure forces, as opposed to viscous forces, were found to be dominant on the cyclorotor blade. The power required for rotation (rather than pitching power) dominated the total blade power.


Author(s):  
Dongli Ma ◽  
Guanxiong Li ◽  
Muqing Yang ◽  
Shaoqi Wang

Laminar separation and transition have significant effects on aerodynamic characteristics of the wing under the condition of low Reynolds numbers. Using the flow control methods to delay and eliminate laminar separation has great significance. This study uses the method combined with water tunnel test and numerical calculation to research the effects of suction flow control on the flow state and aerodynamic force of the wing at low Reynolds numbers. The effects of suction flow rate and suction location on laminar separation, transition and aerodynamic performance of the wing are further researched. The results of the research show that, the suction can control laminar separation and transition effectively, when the suction holes are in the interior of the separation bubble, and close to the separation point, the suction has the best control effect. When the Reynolds number is Re = 3.0 × 105, the suction flow control can make the lift-to-drag ratio of the wing increase by 8.62%, and the aerodynamic characteristics of the wing are improved effectively.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


2012 ◽  
Vol 2012.18 (0) ◽  
pp. 587-588
Author(s):  
Tadateru ISHIDE ◽  
Kazuki SHIRASAWA ◽  
Shoichiro MIKAMI ◽  
Shota HAMAYAMA ◽  
Hiroki NAKAYAMA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document