scholarly journals Characterization of the NASA Langley Arc Heated Scramjet Test Facility using NO PLIF

Author(s):  
Forrest G. Kidd ◽  
Venkateswaran Narayanaswamy ◽  
Paul M. Danehy ◽  
Jennifer A. Inman ◽  
Brett F. Bathel ◽  
...  
Keyword(s):  
2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Giovanni Pace ◽  
Dario Valentini ◽  
Angelo Pasini ◽  
Ruzbeh Hadavandi ◽  
Luca d'Agostino

The paper describes the results of recent experiments carried out in the Cavitating Pump Rotordynamic Test Facility for the dynamic characterization of cavitation-induced flow instabilities as simultaneously observed in the stationary and rotating frames of a high-head, three-bladed axial inducer with tapered hub and variable pitch. The flow instabilities occurring in the eye and inside the blading of the inducer have been detected, identified, and monitored by means of the spectral analysis of the pressure measurements simultaneously performed in the stationary and rotating frames by multiple transducers mounted on the casing near the inducer eye and on the inducer hub along the blade channels. An interaction between the unstable flows in the pump inlet and in the blade channels during cavitating regime has been detected. The interaction is between a low frequency axial phenomenon, which cyclically fills and empties each blade channel with cavitation, and a rotating phenomenon detected in the inducer eye.


Author(s):  
Angelo Cervone ◽  
Cristina Bramanti ◽  
Emilio Rapposelli ◽  
Luca d’Agostino

The aim of the present paper is to provide some highlights about the most interesting experimental activities carried out during the years 2000–2004 through the CPRTF (Cavitating Pump Rotordynamic Test Facility) at Centrospazio/Alta S.p.A. After a brief description of the facility, the experimental activities carried out on a NACA 0015 hydrofoil for the characterization of the pressure coefficient on the suction side and evaluation the cavity length and oscillations are presented. Then, the results obtained to characterize the performance and the cavitation instabilities on three different axial inducers are showed: in particular, a commercial three-bladed inducer, the four-bladed inducer installed in the LOX turbopump of the Ariane Vulcain MK1 rocket engine and the “FAST2”, a two-bladed one manufactured by Avio S.p.A. using the criteria followed for the VINCI180 LOX inducer. The most interesting results are related to the effects of the temperature on the cavitation instabilities on hydrofoils and inducers. Experiments showed that some instabilities, like the cloud cavitation on hydrofoils and the surge on inducers, are strongly affected by the temperature, while others seem not to be influenced by the thermal effects. In the final part of this paper, some indications of the main experimental activities scheduled for the next future are provided.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
F. Reventós ◽  
P. Pla ◽  
C. Matteoli ◽  
G. Nacci ◽  
M. Cherubini ◽  
...  

Integral test facilities (ITFs) are one of the main tools for the validation of best estimate thermalhydraulic system codes. The experimental data are also of great value when compared to the experiment-scaled conditions in a full NPP. The LOBI was a single plus a triple-loop (simulated by one loop) test facility electrically heated to simulate a 1300 MWe PWR. The scaling factor was 712 for the core power, volume, and mass flow. Primary and secondary sides contained all main active elements. Tests were performed for the characterization of phenomenologies relevant to large and small break LOCAs and special transients in PWRs. The paper presents the results of three posttest calculations of LOBI experiments. The selected experiments are BL-30, BL-44, and A1-84. They are LOCA scenarios of different break sizes and with different availability of safety injection components. The goal of the analysis is to improve the knowledge of the phenomena occurred in the facility in order to use it in further studies related to qualifying nodalizations of actual plants or to establish accuracy data bases for uncertainty methodologies. An example of procedure of implementing changes in a common nodalization valid for simulating tests occurred in a specific ITF is presented along with its confirmation based on posttests results.


2021 ◽  
Vol 7 (2) ◽  
pp. 743-746
Author(s):  
Stefan Siewert ◽  
Rudolf Guthoff ◽  
Frank Kamke ◽  
Swen Grossmann ◽  
Michael Stiehm ◽  
...  

Abstract Implant devices for micro invasive glaucoma surgery (MIGS) are gaining increasing acceptance in clinical ophthalmic use. The implant requirements are defined in international standards, such as ANSI Z80.27-2014 and the 2015 Guidance for Industry and Food and Drug Administration Staff “Premarket Studies of Implantable Minimally Invasive Glaucoma Surgical (MIGS) Devices”. The exact fluid-mechanical characterization represents a crucial part of the development and approval of innovative implant devices for MIGS. The current work describes the development and preliminary validation of a versatile test facility for pivotal characterization of glaucoma drainage devices. The test setup enables a pressurization of test specimens by means of two water columns. For measurement of pressure and volume flow, a pressure transducer and a total of three liquid flow meters were implemented into the test setup. Validation was conducted by experimental pressureflow characterization of standardized tubes and a comparison to theoretical results according to Hagen Poiseuille's law for stationary laminar flow of a Newtonian fluid in a tube with a circular cross section. Ultrapure water at (35 ± 2) °C was used for the analyses. The developed test setup potentially enables pressure-flow characterization of test specimens in a wide flow range of 0 μl min-1 ≤ Q ≤ 5.000 μl min-1. The preliminary test facility validation showed a good agreement of measured and theoretical volume flow characteristics as a function of the pressure difference, in the currently investigated flow range of Q < 80 μl min-1. The developed test facility is suitable for pivotal in vitro characterization of glaucoma drainage devices. Future investigations will focus on the final validation of the whole flow range and on the use of the test facility for fluid-mechanical characterization of self-developed prototypes of glaucoma microstents as well as commercially available glaucoma drainage devices.


2021 ◽  
Author(s):  
Mason R. Thornton ◽  
Daniel A. Rosato ◽  
Kareem A. Ahmed
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document