Natural Convective Heat Transfer from a Horizontal Isothermal Circular Element Imbedded in a Flat Adiabatic Surface with a Parallel Adiabatic Covering Surface

Author(s):  
Patrick H. Oosthuizen
Author(s):  
Patrick H. Oosthuizen

Natural convective heat transfer from a horizontal flat rectangular isothermal heated element imbedded in a flat rectangular adiabatic surface has been numerically studied. The surface of the heated rectangular element is in the same plane as the surface of the surrounding adiabatic material. A rectangular flat horizontal adiabatic surface is mounted parallel to and at a relatively short distance from the heated element. The heated element is facing upwards with the covering surface above the element. For the conditions considered laminar, transitional, and turbulent flows can occur. The flow has been assumed to be steady. Constant fluid properties have been assumed except for the density change with temperature which gives rise to the buoyancy forces. This was dealt with using the Boussinesq approach. To obtain the solution, the commercial CFD solver ANSYS FLUENT© was used to numerically solve the governing equations. The k-epsilon turbulence model was employed with account being taken of buoyancy force effects. The effects of the dimensionless distance of the rectangular covering surface from the heated rectangular element and of the ratio of the side lengths of the rectangular element on the variation of the Nusselt number with Rayleigh number have been examined.


Author(s):  
Patrick H. Oosthuizen ◽  
Jane T. Paul

Two-dimensional natural convective heat transfer from vertical plates has been extensively studied. However, when the width of the plate is relatively small compared to its height, the heat transfer rate can be greater than that predicted by these two-dimensional flow results. Because situations that can be approximately modelled as narrow vertical plates occur in a number of practical situations, there exists a need to be able to predict heat transfer rates from such narrow plates. Attention has here been given to a plate with a uniform surface heat flux. The magnitude of the edge effects will, in general, depend on the boundary conditions existing near the edge of the plate. To examine this effect, two situations have been considered. In one, the heated plate is imbedded in a large plane adiabatic surface, the surfaces of the heated plane and the adiabatic surface being in the same plane while in the second there are plane adiabatic surfaces above and below the heated plate but the edge of the plate is directly exposed to the surrounding fluid. The flow has been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. It has also been assumed that the flow is symmetrical about the vertical centre-plane of the plate. The solution has been obtained by numerically solving the full three-dimensional form of the governing equations, these equations being written in terms of dimensionless variables. Results have only been obtained for a Prandtl number of 0.7. A wide range of the other governing parameters have been considered for both edge situations and the conditions under which three dimensional flow effects can be neglected have been deduced.


Author(s):  
Ahmad Kalendar ◽  
Abdulrahim Kalendar ◽  
Yousuf Alhendal ◽  
Sayed Karar ◽  
Adel Alenzi ◽  
...  

Heat transfer often occurs effectively from horizontal elements of relatively complex shapes in natural convective cooling of electronic and electrical devices used in industrial applications. The effect of complex surface shapes on laminar natural convective heat transfer from horizontal isothermal polygons of hexagonal and octagonal flat surfaces facing upward and downward of different aspect ratios has been numerically investigated. The polygons’ surface is embedded in a large surrounding plane adiabatic surface, where the adiabatic surface is in the same plane as the surface of the heated element. For the Boussinesq approach used in this work, the density of the fluid varies with temperature, which causes the buoyancy force, while other fluid properties are assumed constants. The numerical solution of the full three-dimensional form of governing equations is obtained by using the finite volume method-based computational fluid dynamics (CFD) code, FLUENT14.5. The solution parameters include surface shape, dimensionless surface width, different characteristic lengths, the Rayleigh number, and the Prandtl number. These parameters are considered as follows: the Prandtl number is 0.7, the Rayleigh numbers are between 103 and 108, and for various surface shapes the width-to-height ratios are between 0 and 1. The effect of different characteristic lengths has been investigated in defining the Nusselt and Rayleigh numbers for such complex shapes. The effect of these parameters on the mean Nusselt number has been studied, and correlation equations for the mean heat transfer rate have been derived.


Author(s):  
Abdulrahim Kalendar ◽  
Patrick H. Oosthuizen ◽  
Bader Kalandar

Natural convective heat transfer from a two narrow adjacent rectangular isothermal flat plates of the same size embedded in a plane adiabatic surface, the adiabatic surface being in the same plane as the surfaces of the heated plates, has been numerically investigated. The two plates have the same surface temperature and they are aligned with each other but are separated form each other by a relatively small gap. Results for the case where the plates are vertical and where they are inclined at positive or negative angles to the vertical have been obtained. It has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated using the Boussinesq approach. It has also been assumed that the flow is symmetrical about the vertical center plane between the two plates. The solution has been obtained by numerically solving the full three-dimensional form of governing equations, these equations being written in dimensionless form. The solution was obtained using the commercial finite volume method based cfd code, FLUENT. The solution has the Rayleigh number, the dimensionless plate width, the angle of inclination, the dimensionless gap between two flat plates, and the Prandtl number as parameters. Results have only been obtained for a Prandtl number of 0.7 Results have been obtained for Rayleigh numbers between 103 and 107 for plate width-to-height ratios of between 0.15 and 0.6, for gap between the adjacent edges to plate height ratios of between 0 and 0.2, for angles of inclination between +45° and −45°.


Sign in / Sign up

Export Citation Format

Share Document