Community Noise of Urban Air Transportation Vehicles

Author(s):  
Damiano Casalino ◽  
Wouter C. van der Velden ◽  
Gianluca Romani
2021 ◽  
Vol 263 (6) ◽  
pp. 187-193
Author(s):  
Michael Bauer

The awareness about UAM is amplified by steadily growing numbers of air taxi concepts being announced. In general environmentally friendly by electric propulsion, community noise and en-route noise are still prominent open questions. Several studies for larger UAM aircraft, describing the acoustic characteristics of a variety of potential air taxi concepts, have been performed by the author. Due to the abovementioned multitude of different vehicle concepts and their multiple operational conditions, each of them shows individual sound characteristics. Therefore, further investigations of noise created by air taxi fleets appear to be crucial. Understanding of community noise around vertiports and along air taxi routes will strongly depend on those fleets. In this paper, acoustically different air taxi systems are composing different sets of air taxi fleets, used for air traffic noise simulations. The simulations start with baseline scenarios of equally represented taxi systems on fixed flight paths with several flight levels in a certain air lane. The final fleets are consisting of random air taxi composition with randomly populated flight paths. The results, based on common noise metrics and changes in the number of affected residents, could provide a first indication how to reduce community noise by future UAM traffic management.


2021 ◽  
Vol 263 (6) ◽  
pp. 787-798
Author(s):  
Juliet Page ◽  
Stephen A. Rizzi ◽  
Rui Cheng

Predictions of community noise exposure from the NASA urban air mobility (UAM) concept vehicles have been conducted for representative operations using the FAA Aviation Environmental Design Tool (AEDT) in order to demonstrate modeling tool interoperability and assess applicability, capabilities and limitations of integrated noise modeling tools. To both quantify limitations and highlight other capabilities, a comparative analysis is performed using a time simulation method, in particular, using the Volpe Advanced Acoustic Model (AAM). Starting with the same source noise model, the 3D directivity of a UAM concept vehicle is predicted in terms of aeroacoustic pressure time histories at a sphere of observers near the vehicle. In addition to distilling those data to a set of noise-power-distance data for input to AEDT, the data are processed preserving directivity, into narrowband, one-twelfth and one-third octave bands for input to AAM. Results from AEDT and AAM modeling are provided for a variety of metrics to demonstrate the effect that source noise and propagation modeling fidelity have on predicted results at receptors over a study area.


2020 ◽  
Vol 12 (8) ◽  
pp. 3320
Author(s):  
Hinnerk Eißfeldt

In about 15 years, there is likely to be urban air mobility (UAM) in larger cities across the globe. Air taxis will provide on-demand transportation for individual needs. They will also connect important transportation nodes, such as airports and city centers, as well as providing quick transfers between train stations or a convenient option for crossing rivers and lakes. It is hoped that UAM will help meet today’s political targets of sustainability and decarbonization. However, there are certain threats that could impede the sustainable and thus successful introduction of UAM to our cities, with noise being a prominent limitation. This paper argues that citizens have to be viewed as stakeholders in urban air transportation, regardless of whether they or not intend to use it, and that a concept of resident participatory noise sensing (PNS) will be beneficial to the implementation of UAM. Web-based services and smartphones facilitate the access and updating of current information about local noise distributions, thus enabling them to be used to foster UAM in smart cities.


Author(s):  
Jeffrey P. Slotnick ◽  
Abdollah Khodadoust ◽  
Juan J. Alonso ◽  
David L. Darmofal ◽  
William D. Gropp ◽  
...  

As global air travel expands rapidly to meet demand generated by economic growth, it is essential to continue to improve the efficiency of air transportation to reduce its carbon emissions and address concerns about climate change. Future transports must be ‘cleaner’ and designed to include technologies that will continue to lower engine emissions and reduce community noise. The use of computational fluid dynamics (CFD) will be critical to enable the design of these new concepts. In general, the ability to simulate aerodynamic and reactive flows using CFD has progressed rapidly during the past several decades and has fundamentally changed the aerospace design process. Advanced simulation capabilities not only enable reductions in ground-based and flight-testing requirements, but also provide added physical insight, and enable superior designs at reduced cost and risk. In spite of considerable success, reliable use of CFD has remained confined to a small region of the operating envelope due, in part, to the inability of current methods to reliably predict turbulent, separated flows. Fortunately, the advent of much more powerful computing platforms provides an opportunity to overcome a number of these challenges. This paper summarizes the findings and recommendations from a recent NASA-funded study that provides a vision for CFD in the year 2030, including an assessment of critical technology gaps and needed development, and identifies the key CFD technology advancements that will enable the design and development of much cleaner aircraft in the future.


Author(s):  
Zhongqi (Henry) Jia ◽  
Seongkyu Lee

This paper investigates the acoustics of a one-passenger and a six-passenger quadrotor urban air mobility (UAM) aircraft in level flight based on a high-fidelity computational fluid dynamics (CFD) approach. The CFD simulations are carried out using the HPCMP CREATETM-AV multidisciplinary rotorcraft analysis and simulation tool Helios. The acoustic simulations are performed using the acoustic prediction tool PSU-WOPWOP. A total of three CFD models are simulated: a one-passenger isolated rotor configuration, a one-passenger full configuration with a fuselage, and a six-passenger isolated rotor configuration. The noise comparison between the one-passenger isolated rotor case and the full configuration case shows that the vehicle fuselage increases the A-weighted sound pressure level (SPL) up to 5 dB. The acoustic comparison between the one-passenger and the six-passenger isolated rotor configuration shows that the maximum overall SPL difference is up to 14 dB. Furthermore, it is shown that the noise of the six-passenger configuration is approximately 11 dB lower than that of a similar-sized conventional helicopter in an overhead scenario. The community noise impact of UAM aircraft is also assessed and compared to various background noise levels. The results show that the one-passenger quadrotor noise can be fully masked by freeway noise at an altitude greater than or equal to 1000 ft, while the six-passenger quadrotor noise can only be partially masked by freeway noise even at an altitude of 1000 ft.


Sign in / Sign up

Export Citation Format

Share Document