scholarly journals Steady and Unsteady compressible Reduced-Order Models of a Zero-Net Mass-Flux Synthetic Jet Actuator

2019 ◽  
Author(s):  
Ramzi Messahel ◽  
Yannick Bury ◽  
Julien Bodart ◽  
Nicolas Doué
Author(s):  
Ramzi Messahel ◽  
Yannick Bury ◽  
Julien Bodart ◽  
Nicolas Doué

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hongbin Mu ◽  
Qingdong Yan ◽  
Wei Wei ◽  
Pierre E. Sullivan

A synthetic jet actuator is a zero-net mass-flux device that imparts momentum to its surroundings and has proved to be a useful active flow control device. Using the lattice Boltzmann method (LBM) with the Bhatnagar-Gross-Krook (BGK) collision models, a 3-D simulation of a synthetic jet with cylindrical cavity employing a sinusoidal velocity inlet boundary condition was conducted. The velocity distributions are illustrated and discussed, and the numerical results are validated against previous experimental data. The computed results show the ingestion and expulsion flow over one working cycle as well as the evolution of vortices important to the control of the separated shear layer. Zero-net mass-flux behavior is confirmed.


Author(s):  
Michael Amitay ◽  
Florine Cannelle

The transitory behavior of an isolated synthetic (zero net mass flux) jet was investigated experimentally using PIV and hot-wire anemometry. In the present work, the synthetic jet was produced over a broad range of length- and time-scales, where three formation frequencies, f = 300, 917, and 3100Hz, several stroke lengths (between 5 and 50 times the slit width) and Reynolds numbers (between 85 and 408) were tested. The transitory behavior, following the onset of the input signal, in planes along and across the slit was measured. It was found that the time it takes the synthetic jet to become fully developed depends on the stroke length, formation frequency and Reynolds number. In general, the transients consist of four stages associated with the merging of vortices in both cross-stream and spanwise planes that grow in size, which lead to the pinch off of the leading vortex before the jet reaches its steady-state.


2011 ◽  
Vol 27 (4) ◽  
pp. 503-509 ◽  
Author(s):  
L.-Y. Tseng ◽  
A.-S. Yang ◽  
J.-C. Lin

ABSTRACTMiniature synthetic jet actuators are low operating power, zero-net-mass-flux and very compact devices which have demonstrated their capability in modifying the subsonic flow characteristics for boundary layer flow control. In order to improve the design active flow control systems, the present study aims to examine the formation and interaction of unsteady flowfield of a synthetic jet with external crossflow. In view of a single synthetic jet emitting into a turbulent boundary layer crossflow via a circular orifice, the theoretical model utilized the transient three-dimensional conservation equations of mass and momentum for compressible, turbulent flows with a negligible temperature variation over the computational domain. The motion of a movable membrane plate was also treated as the moving boundary by prescribing the displacement on the plate surface. The predictions by the computational fluid dynamics (CFD) software ACE+®were compared with the measured transient phase-averaged velocities in literature for code validation. The predictions showed the time evolution of the large vortical structure originating from the jet orifice and its successive interaction with the crossflow to change the flow structure inside the boundary layer.


Author(s):  
Othon K. Rediniotis ◽  
Andrew J. Kurdila

Abstract While the potential for the use of synthetic jet actuators to achieve flow control has been noted fro some tme, most studies of these devices have been empirical or experimental in nature. Several technical issues must be resolved to achieve rigorous, model-based, closed loop control methodologies for this class of actuator. The goal of this paper is consequently two-fold. First, we seek to derive and evaluate model order reduction methods based on proper orthogonal decomposition that are suitable for synthetic jet actuators. Secondly, we seek to derive rigorously stable feedback control laws for the derived reduced order models. The readability of the control strategies is discussed, and a numerical study of the effectiveness of the reduced order models are summarized.


Author(s):  
Spencer O. Albright ◽  
Stephen A. Solovitz

Synthetic jet actuators use oscillating motion near a fixed orifice to produce a net axial momentum flux with zero net mass flux. Through strategic application, these devices can provide flow control, propulsive thrust, and impingement cooling. To improve this performance, a new actuator has been designed with a variable orifice size, which can potentially increase exit flow speeds. The jet is generated using a pneumatic cylinder, which is oscillated linearly near an orifice. The opening consists of a camera aperture, whose diameter can decrease by a factor of 18 with the aid of a second pneumatic cylinder. The system is capable of operating at frequencies up to 5 Hz while maintaining full piston stroke, and the phase between the piston and orifice motion can be varied from 0 to 180 degrees. The flow structure is investigated using phase-locked particle image velocimetry (PIV), which shows that simultaneous constriction of the exit can substantially increase the exit speed. The initial design is used with air flow but will be extended to water applications in the future.


Sign in / Sign up

Export Citation Format

Share Document