A Frequency Domain Model for Rotor Turbulence Ingestion Sound Radiated to the Near and Far Fields

Author(s):  
Jason M. Anderson ◽  
Field Manar
Author(s):  
Sang Woo Kim ◽  
Svein Sævik ◽  
Jie Wu

Abstract This paper addresses the performance evaluation of an empirical time domain Vortex Induced Vibrations (VIV) model which has been developed for several years at NTNU. Unlike the frequency domain which is the existing VIV analysis method, the time domain model introduces new vortex shedding force terms to the well known Morison equation. The extra load terms are based on the relative velocity, a synchronization model and additional empirical coefficients that describe the hydrodynamic forces due to cross-flow (CF) and In-line (IL) vortex shedding. These hydrodynamic coefficients have been tuned to fit experimental data and by considering the results from the one of existing frequency domain VIV programs, VIVANA, which is widely used for industrial design. The feature of the time domain model is that it enables to include the structural non-linearity, such as variable tension, and time-varying flow. The robustness of the new model’s features has been validated by comparing the test results in previous researches. However, the riser used in experiments has a relatively small length/diameter (L/D) ratio. It implies that there is a need for more validation to make it applicable to real riser design. In this study, the time domain VIV model is applied to perform correlation studies against the Hanøytangen experiment data for the case of linear sheared current at a large L/D ratio. The main comparison has been made with respect to the maximum fatigue damage and dominating frequency for each test condition. The results show the time domain model showed reasonable accuracy with respect to the experimental and VIVANA. The discrepancy with regard to experiment results needs to be further studied with a non-linear structural model.


Author(s):  
R. Wang ◽  
Y. Wei ◽  
M. van Rooij ◽  
B. Jayawardhana ◽  
A. I. Vakis

In recent years, wave energy converters (WECs) have received considerable attention as an efficient way to harvest alternative energy sources. Within this class of systems, point-absorbers are popular and have become one of the most widely used renewable energy harvest designs all over the world, at least in the preliminary R&D stage, with many relevant research works having been published as well. However, unlike the single buoy and PTO systems which already have a comprehensive research basis, the connection cable has received little attention. The traditional taut cable analysis approach, initiated from the needs of the oil&gas industry, has been applied for WEC investigations. However, this approach utilizes an essential assumption that the oscillating term (PTO force) is much smaller than the static term of the cable force (pre-tension) and could be neglected, which may not be proper for WEC applications. In this work, a conventional frequency domain model is utilized to test and verify the validity of the previously mentioned assumption by presenting the ratio between two force terms. Then the ratio could be applied in combination with sea state contours to reveal the critical state of the cable. Then, a fully nonlinear time domain method of a numerical solution of the point-absorber wave energy converter is presented. According to the critical states obtained from the frequency domain analysis, an improved model of a slack cable is proposed. Its influence on the energy extraction performance is investigated using the open source code — WEC-Sim. This work provides insight into simulating a proper model of the cable and how the design of the cable influences the WEC performance.


Sign in / Sign up

Export Citation Format

Share Document