Computational Design Methodology of Adaptive Outer Mold Line for Robust Low En-Route Noise of a Supersonic Aircraft

2021 ◽  
Author(s):  
Jonathan M. Weaver-Rosen ◽  
Forrest L. Carpenter ◽  
Paul G. Cizmas ◽  
Richard J. Malak ◽  
Troy A. Abraham ◽  
...  
2021 ◽  
Author(s):  
J Rogers ◽  
Marc Aurel Schnabel ◽  
Tane Moleta

This paper presents the trilogy of virtual classifications, the speculative environment, the virtual inhabitant and the virtual built-form. These combine, generating a new realm of design within immersive architectural space, all to be designed relative to each other, this paper focuses on the speculative environment portion. This challenged computational design and representation through atmospheric filters, visible environment boundaries, materiality and audio experience. The speculative environment was generated manipulating the physical laws of the physical world, applied within the virtual space. The outcome provided a new spatial experience of architectural dynamics enhanced by detailed spatial qualities. Design concepts within this paper suggest at what immersive virtual reality can evolve into. Following an interconnective design methodology framework allowed a high level of complexity and richness to shine through the research case study throughout the process and final dissemination stages.


2021 ◽  
Author(s):  
J Rogers ◽  
Marc Aurel Schnabel ◽  
Tane Moleta

This paper presents the trilogy of virtual classifications, the speculative environment, the virtual inhabitant and the virtual built-form. These combine, generating a new realm of design within immersive architectural space, all to be designed relative to each other, this paper focuses on the speculative environment portion. This challenged computational design and representation through atmospheric filters, visible environment boundaries, materiality and audio experience. The speculative environment was generated manipulating the physical laws of the physical world, applied within the virtual space. The outcome provided a new spatial experience of architectural dynamics enhanced by detailed spatial qualities. Design concepts within this paper suggest at what immersive virtual reality can evolve into. Following an interconnective design methodology framework allowed a high level of complexity and richness to shine through the research case study throughout the process and final dissemination stages.


2018 ◽  
Vol 87 (1) ◽  
pp. 105-129 ◽  
Author(s):  
Adi Goldenzweig ◽  
Sarel J. Fleishman

Proteins are increasingly used in basic and applied biomedical research. Many proteins, however, are only marginally stable and can be expressed in limited amounts, thus hampering research and applications. Research has revealed the thermodynamic, cellular, and evolutionary principles and mechanisms that underlie marginal stability. With this growing understanding, computational stability design methods have advanced over the past two decades starting from methods that selectively addressed only some aspects of marginal stability. Current methods are more general and, by combining phylogenetic analysis with atomistic design, have shown drastic improvements in solubility, thermal stability, and aggregation resistance while maintaining the protein's primary molecular activity. Stability design is opening the way to rational engineering of improved enzymes, therapeutics, and vaccines and to the application of protein design methodology to large proteins and molecular activities that have proven challenging in the past.


2014 ◽  
Vol 19 (1) ◽  
pp. 60-69 ◽  
Author(s):  
R. Michael Winters ◽  
Marcelo M. Wanderley

Emotion is a word not often heard in sonification, though advances in affective computing make the data type imminent. At times the relationship between emotion and sonification has been contentious due to an implied overlap with music. This paper clarifies the relationship, demonstrating how it can be mutually beneficial. After identifying contexts favourable to auditory display of emotion, and the utility of its development to research in musical emotion, the current state of the field is addressed, reiterating the necessary conditions for sound to qualify as a sonification of emotion. With this framework, strategies for display are presented that use acoustic and structural cues designed to target select auditory-cognitive mechanisms of musical emotion. Two sonifications are then described using these strategies to convey arousal and valence though differing in design methodology: one designed ecologically, the other computationally. Each model is sampled at 15-second intervals at 49 evenly distributed points on the AV space, and evaluated using a publically available tool for computational music emotion recognition. The computational design performed 65 times better in this test, but the ecological design is argued to be more useful for emotional communication. Conscious of these limitations, computational design and evaluation is supported for future development.


Plasmonics ◽  
2014 ◽  
Vol 10 (3) ◽  
pp. 569-583 ◽  
Author(s):  
Yongbo Deng ◽  
Zhenyu Liu ◽  
Chao Song ◽  
Junfeng Wu ◽  
Yongshun Liu ◽  
...  

2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Mark M. Plecnik ◽  
J. Michael McCarthy

This paper presents a design methodology for Stephenson II six-bar function generators that coordinate 11 input and output angles. A complex number formulation of the loop equations yields 70 quadratic equations in 70 unknowns, which is reduced to a system of ten eighth degree polynomial equations of total degree 810=1.07×109. These equations have a monomial structure which yields a multihomogeneous degree of 264,241,152. A sequence of polynomial homotopies was used to solve these equations and obtain 1,521,037 nonsingular solutions. Contained in these solutions are linkage design candidates which are evaluated to identify cognates, and then analyzed to determine their input–output angles in each assembly. The result is a set of feasible linkage designs that reach the required accuracy points in a single assembly. As an example, three Stephenson II function generators are designed, which provide the input–output functions for the hip, knee, and ankle of a humanoid walking gait.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mark Mirotznik ◽  
William Beck ◽  
Kimberly Olver ◽  
John Little ◽  
Peter Pa

We present computational and experimental results of dust particles that can be tuned to preferentially reflect or emit IR radiation within the 8–14 μm band. The particles consist of thin metallic subwavelength gratings patterned on the surface of a simple quarter wavelength cavity. This design creates distinct IR absorption resonances by combining the plasmonic resonance of the grating with the natural resonance of the cavity. We show that the resonance peaks are easily tuned by varying either the geometry of the grating or the thickness of the cavity. Here, we present a computational design algorithm along with experimental results that validate the design methodology.


Sign in / Sign up

Export Citation Format

Share Document