Propulsor Models for Computational Analysis of Aircraft Aerodynamic Performance with Boundary Layer Ingestion

2021 ◽  
Author(s):  
David K. Hall ◽  
Michael Lieu
Author(s):  
Longxin Zhang ◽  
Shaowen Chen ◽  
Hao Xu ◽  
Jun Ding ◽  
Songtao Wang

Compared with suction slots, suction holes are (1) flexible in distribution; (2) alterable in size; (3) easy to fabricate and (4) high in strength. In this paper, the numerical and experimental studies for a high turning compressor cascade with suction air removed by using suction holes in the end-wall at a low Mach numbers are carried out. The main objective of the investigation is to study the influence of different suction distributions on the aerodynamic performance of the compressor cascade and to find a better compound suction scheme. A numerical model was first made and validated by comparing with the experimental results. The computed flow visualization and exit parameter distribution showed a good agreement with experimental data. Second, the model was then used to simulate the influence of different suction distributions on the aerodynamic performance of the compressor cascade. A better compound suction scheme was obtained by summarizing numerical results and tested in a low speed wind tunnel. As a result, the compound suction scheme can be used to significantly improve the performance of the compressor cascade because the corner separation gets further suppressed.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


2020 ◽  
Vol 92 (4) ◽  
pp. 611-620
Author(s):  
Ryszard Szwaba ◽  
Piotr Kaczyński ◽  
Piotr Doerffer

Purpose The purpose of this paper is to study experimentally the effect of transition and also the roughness height on the flow structure of the shock wave boundary layer interaction in the blades passage of a compressor cascade. Design/methodology/approach A model of a turbine compressor passage was designed and assembled in a transonic wind tunnel. In the experiment, the distributed roughness with different heights and locations was used to induce transition upstream of the shock wave. Findings Recommendation regarding the roughness parameters for the application depends on what is more important as goal, whether the reduction of losses or unsteadiness. In case if more important are the losses reduction, a good choice for the roughness location seems to be the one close to the shock wave position. Research limitations/implications The knowledge gained by this paper will enable the implementation of an effective laminar flow technology for engines in which the interaction of a laminar boundary layer with a shock wave takes place in the propulsion system and causes severe problems. Originality/value The paper focuses on the influence of the boundary layer transition induced by different roughness values and locations on aerodynamic performance of a compressor cascade. Very valuable results were obtained in the roughness application for the boundary layer transition control, demonstrating a positive effect in changing the nature of the interaction and also some negative influence in case of oversized roughness height, which cannot be found in the existing literature.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 669-676
Author(s):  
Di Zhang ◽  
Ma Jiao-Bin ◽  
Qi Jing

The aerodynamic performance of blade affects the vibration characteristics and stable operation of turbomachinery closely. The aerodynamic performance of turbine stage can be improved by using swept blade. In this paper, the RANS method and the RNG k-? turbulence mode were adopted to investigate the unsteady flow characteristics and excitation force of swept blade stage. According to the results, for the swept blade, the fluid of boundary layer shifts in radial direction due to the influence of geometric construction. It is observed that there is similar wake development for several kinds of stators, and the wake has a notable effect on the boundary layer of the rotor blades. When compared with straight blade, pressure fluctuation of forward-swept blade is decreased while the pressure fluctuation of backward-swept blade is increased. The axial and tangential fundamental frequency excitation force factors of 15?forward-swept blade are 0.139 and 0.052 respectively, which are the least, and all excitation force factors are in the normal range. The excitation factor of the forward-swept blade is decreased compared with straight blade, and the decreasing percentage is closely related to the swept angle. As for backward-swept blades, the situation is the other way around. Additionally, the change of axial excitation factor is more obvious. So the vibration reduction performance of forward-swept blade is better.


Author(s):  
Hua-wei Lu ◽  
Yi Yang ◽  
Shang Guo ◽  
Yu-xuan Huang ◽  
Hong Wang ◽  
...  

The flow characteristics and loss behavior over an array of parallel recessed dimples on a high turning linear compressor cascade have been investigated using the Reynolds-averaged Navier–Stokes approach. Steady simulations have been carried out at three dimple locations of 10–32%, 38–60%, 60–82% chord length of suction surface with the inlet Mach number of 0.7. Flow conditions were compared in exit loss coefficient, static pressure rise, streamline patterns, vortex structures, boundary layer parameters, and blade surface pressure between the smooth and the modified cascades. The results indicate that the dimples prior to the separation line report an overall enhancement in the aerodynamic performance in comparison to that of a smooth blade. Symmetric spanwise vortex, which energizes the boundary layer, can roll up inside the dimples. Therefore, the boundary layer with the higher momentum can bear the adverse pressure gradient, which will suppress the flow separation and associated losses. Three dimpled configurations can all eliminate the separation bubble on the suction side, but the dimples located at 60–82% chord length take the negative effect on the aerodynamic performance due to the more chaos condition in the corner separation region. The comparison results also indicate that the optimum location of dimples may exist in front of the separation bubble. Loss reduction of 18.8% and 10.8% can be achieved under the 10–32% c and 38–60% c dimple configurations, respectively.


Sign in / Sign up

Export Citation Format

Share Document