scholarly journals Flow control in linear compressor cascades by inclusion of suction side dimples at varying locations

Author(s):  
Hua-wei Lu ◽  
Yi Yang ◽  
Shang Guo ◽  
Yu-xuan Huang ◽  
Hong Wang ◽  
...  

The flow characteristics and loss behavior over an array of parallel recessed dimples on a high turning linear compressor cascade have been investigated using the Reynolds-averaged Navier–Stokes approach. Steady simulations have been carried out at three dimple locations of 10–32%, 38–60%, 60–82% chord length of suction surface with the inlet Mach number of 0.7. Flow conditions were compared in exit loss coefficient, static pressure rise, streamline patterns, vortex structures, boundary layer parameters, and blade surface pressure between the smooth and the modified cascades. The results indicate that the dimples prior to the separation line report an overall enhancement in the aerodynamic performance in comparison to that of a smooth blade. Symmetric spanwise vortex, which energizes the boundary layer, can roll up inside the dimples. Therefore, the boundary layer with the higher momentum can bear the adverse pressure gradient, which will suppress the flow separation and associated losses. Three dimpled configurations can all eliminate the separation bubble on the suction side, but the dimples located at 60–82% chord length take the negative effect on the aerodynamic performance due to the more chaos condition in the corner separation region. The comparison results also indicate that the optimum location of dimples may exist in front of the separation bubble. Loss reduction of 18.8% and 10.8% can be achieved under the 10–32% c and 38–60% c dimple configurations, respectively.

Author(s):  
Syed Anjum Haider Rizvi ◽  
Joseph Mathew

At off-design conditions, when the blade Reynolds number is low, a significant part of the blade boundary layer can be transitional. Then, standard RANS models are unable to predict the flows correctly but explicit transition modeling provides some improvement. Since large eddy simulations (LES) are improvements on RANS, the performance of LES was examined by simulating a flow through a linear, compressor cascade for which experimental data are available — specifically at the Reynolds number of 210,000 based on blade chord when transition processes occur over a significant extent of the suction surface. The LES were performed with an explicit filtering approach, applying a low-pass filter to achieve sub-grid-scale modeling. Explicit 8th-order difference formulas were used to obtain high resolution spatial derivative terms. An O-grid was wrapped around the blade with suitable clustering for the boundary layer and regions of large changes along the blade. Turbulent in-flow was provided from a precursor simulation of homogeneous, isotropic turbulence. Two LES and a DNS were performed. The second LES refines the grid in the vicinity of the separation bubble on the suction surface, and along the span. Surface pressure distributions from all simulations agree closely with experiment, thus providing a much better prediction than even transition-sensitive RANS computations. Wall normal profiles of axial velocity and fluctuations also agree closely with experiment. Differences between LES and DNS are small, but the refined grid LES is closer to the DNS almost everywhere. This monotonic convergence, expected of the LES method used, demonstrates its reliability. The pressure surface undergoes transition almost immediately downstream of the leading edge. On the suction surface there are streaks as expected for freestream-turbulence-induced transition, but spots do not appear. Instead, a separating shear layer rolls up and breaks down to turbulence at re-attachment. Both LES capture this process. Skin friction distribution reveals the transition near the re-attachment to occur over an extended region, and subsequent relaxation is slower in the LES. The narrower transition zone in the DNS is indicative of the essential role of smaller scales during transition that should not be neglected in LES. Simulation data also reveal that an assumption of laminar kinetic energy transition models that Reynolds shear stress remains small in the pre-transitional region is supported. The remaining differences in the predictions of such models is thus likely to be the separation-induced transition which preempts the spot formation.


1990 ◽  
Vol 112 (2) ◽  
pp. 256-265 ◽  
Author(s):  
Y. Elazar ◽  
R. P. Shreeve

A detailed two-component LDV mapping of the flow through a controlled diffusion compressor cascade at low Mach number ( ~ 0.25) and Reynolds number of about 7 × 105, at three inlet air angles from design to near stall, is reported. It was found that the suction-side boundary layer reattached turbulent after a laminar separation bubble, and remained attached to the trailing edge even at the highest incidence, at which losses were 3 to 4 times the minimum value for the geometry. Boundary layer thickness increased to fill 20 percent of the blade passage at the highest incidence. Results for pressure-side boundary layer and near-wake also are summarized. Information sufficient to allow preliminary assessment of viscous codes is tabulated.


Author(s):  
Dimitri P. Tselepidakis ◽  
Sung-Eun Kim

This paper presents the computation of the flow around a controlled diffusion compressor cascade. Features associated with by-pass transition close to the leading edge — including laminar leading-edge separation — contribute significantly to the evolution of the boundary layer on the blade surface. Previous studies have demonstrated that conventional k-ε models, based on linear or non-linear Boussinesq stress-strain relations, are able to capture by-pass transition in simple shear, but are unable to resolve transitional features in complex strain, like the leading-edge separation bubble, which is of considerable influence to the suction-side flow at high inlet angle. Here, the k-ω turbulence model has been implemented in a nonstaggered, finite-volume based segregated Reynolds-Averaged Navier-Stokes solver. We demonstrate that this model, if properly sensitized to the generation of turbulence by irrotational strains, is capable of capturing the laminar leading-edge separation bubble. The real flow around the leading edge is laminar and the transition is only provoked on the reattachment region. Additional investigation of transition in a flat-plate boundary layer development has also produced reasonably promising results.


Author(s):  
Reinhold Teusch ◽  
Stefan Brunner ◽  
Leonhard Fottner ◽  
Marius Swoboda

This paper presents results of boundary layer and loss measurements in a high speed cascade wind tunnel on a linear compressor cascade under the influence of unsteady, periodic wakes. The wakes of an upstream blade row were simulated by cylindrical bars moved by a belt mechanism upstream of the cascade. Extensive hot-film array, hot-wire and pressure measurements with variation of steady and unsteady inlet flow conditions have been performed for a better understanding of the transition and loss mechanisms on a blade row interacting with wakes. The incoming wakes are inducing early forced transition in the boundary layer followed in time by calmed regions. Due to its higher shear stress level and its fuller velocity profile, the calmed flow is able to suppress laminar separation bubbles and to delay transition in the region with undisturbed flow between wakes, playing a significant role in the loss generation process. At the investigated low Reynolds number, where the measurements for the steady flow case showed a well-developed laminar separation bubble, reductions of profile loss up to 20% were observed for the measured configuration. In the case of the high Reynolds number, where in undisturbed flow only a small separation bubble was detected, a profile loss rise up to 30% was measured. Beside a better understanding of unsteady flow physics the goal of these basic investigations of unsteady transition is to create a wide database for the improvement of transition modeling in unsteady CFD codes.


2005 ◽  
Vol 128 (2) ◽  
pp. 357-366 ◽  
Author(s):  
Yanping Song ◽  
Fu Chen ◽  
Jun Yang ◽  
Zhongqi Wang

This paper is focused on the numerical investigation of boundary layer suction (BLS) via a slot on the suction surfaces of two compound lean compressor cascades with large camber angles as well as a conventional straight compressor cascade for comparison. The objective of the investigation is to study the influence of boundary layer suction on the performance of compound lean compressor cascades, thus to discuss the possibility of the application of boundary layer suction to improve their performance. An extensive numerical study has been carried out under different spanwise lengths, different axial positions of the slots, and different suction flow rates. The results show that the total loss of all three cascades is reduced significantly by boundary layer suction, and the largest reduction occurs at the highest suction flow rate. The axial locations of the slot have little effect on the total loss of the three cascades, which means the slots are opened within the optimal axial range in this case. The slot opened along the full span is the best one to obtain the largest reduction in total loss for all three cascades due to the alleviation of flow separation in the corner between the endwall and the suction surface. Moreover, the flow turning is increased, and pressure rise at the rear of the passage is recovered along the whole blade height via boundary layer suction along the full span, enhancing the working range of the highly loaded compressor cascades.


Author(s):  
Ju Hyun Im ◽  
Ju Hyun Shin ◽  
Garth V. Hobson ◽  
Seung Jin Song ◽  
Knox T. Millsaps

An experimental investigation has been conducted to characterize the influence of leading edge roughness and Reynolds number on compressor cascade profile loss. Tests have been conducted in a low-speed linear compressor cascade at Reynolds numbers between 210,000 and 640,000. Blade loading and loss have been measured with pressure taps and pneumatic probes. In addition, a two-component laser-doppler velocimeter (LDV) has been used to measure the boundary layer velocity profiles and turbulence levels at various chordwise locations near the blade suction surface. The “smooth” blade has a centerline-averaged roughness (Ra) of 0.62 μm. The “rough” blade is roughened by covering the leading edge of the “smooth” blade, including 2% of the pressure side and 2% of the suction side, with a 100 μm-thick tape with a roughness Ra of 4.97 μm. At Reynolds numbers ranging from 210,000 to 380,000, the leading edge roughness decreases loss slightly. At Reynolds number of 210,000, the leading edge roughness reduces the size of the suction side laminar separation bubble and turbulence level in the turbulent boundary layer after reattachment. Thus, the leading edge roughness reduces displacement and momentum thicknesses as well as profile loss at Reynolds number of 210,000. However, the same leading edge roughness increases loss significantly for Re = 450,000 ∼ 640,000. At Reynolds number of 640,000, the leading edge roughness decreases the magnitude of the favorable pressure gradient for axial chordwise locations less than 0.41 and induces turbulent separation for axial chordwise locations greater than 0.63, drastically increasing loss. Thus, roughness limited to the leading edge still has a profound effect on the compressor flow field.


Author(s):  
Fu Chen ◽  
Yanping Song ◽  
Huanlong Chen ◽  
Zhongqi Wang

The effects of boundary layer suction on the aerodynamic performance of compressor cascade are mainly determined by: (1) the location of the suction slot; (2) the suction flow rate; (3) the suction slot geometry; and (4) the aerodynamic parameters of the cascade (e.g. solidity and incidence). In this paper, an extensive numerical study has been carried out to investigate the effects of these influencing factors in a highly-loaded compressor cascade by comparing the aerodynamic performance of the cascade in order to give guidance for the application of boundary layer suction to improve the performance of modern highly-loaded compressors. The results show that boundary layer suction alleviates the accumulation of low-energy fluid at suction surface corners and enhances the ability of flow turning, and this improvement in flow behavior depends on the location of the suction slot and the suction flow rate. When the location of the suction slot and the suction flow rate are fixed, as the cascade solidity decreases from 1.819 to 1.364 and 1.091, the cascade total pressure loss is reduced at most by 25.1%, 27.7% and 32.9% respectively, and the cascade exit flow deviation is decreased by 3.1°, 4.2° and 5.0° accordingly. Moreover, boundary layer suction also has the largest effect in the cascade with smaller solidity at large positive incidences, which means that boundary layer suction is an effective way to widen the stable operating range of the highly-loaded compressor cascade. The suction slot geometry is described by the suction slot width and the suction slot angle with respect to the direction normal to the blade suction surface. The results show that the flow behavior is improved and the endwall loss is reduced further as the increase of the suction slot width. The suction slot angle has an obvious influence on the pressure inside the slot, therefore, should be considered in the design of the suction slot since the maximum pressure inside the slot is usually required.


Author(s):  
M. Boehle ◽  
U. Stark

The paper reports on a numerical investigation into the effects of inlet boundary layer skew on the aerodynamic performance of a high turning 50 deg, 2D compressor cascade. The cascade geometry is representative of stator hub sections in highly loaded single-stage axial-flow low-speed compressors. 2D blades with NACA 65 thickness distribution on circular arc camber lines were used. The blade aspect ratio was 1.0, the space/chord ratio 0.5 and the stagger angle 25 deg. The simulations were done with a commercially available, steady three-dimensional RANS solver with the Spalart-Allmaras turbulence model. The incoming end-wall boundary layers were assumed to be collateral or skewed. In both cases the profile boundary layers were fully turbulent. The Reynolds-number was fixed at 600000 and the thickness of the incoming end-wall boundary layer was 0.1. Results are shown for an inlet-air angle of 50 deg, representing the impact free inlet-air angle of a hypothetical cascade with zero-thickness blades. Contrary to what has been expected, the results do not show (hub) corner stall, neither with nor without end-wall boundary layer skew. Flow reversal happens to occur almost exclusively on the suction surface of the blades, not on the end-walls. The end-wall flow is highly overturned, when the incoming boundary layer is collateral and is much less curved when the incoming boundary layer is skewed and (re)energized. This in turn leads to an interaction between the end-wall and blade suction surface flow which is much stronger in the first than in the second case with corresponding higher and lower losses, respectively.


Author(s):  
Manu Kamin ◽  
Joseph Mathew

Numerical simulations were performed of experiments from a cascade of stator blades at three low Reynolds numbers representative of flight conditions. Solutions were assessed by comparing blade surface pressures, velocity and turbulence intensity along blade normals at several stations along the suction surface and in the wake. At Re = 210,000 and 380,000 the laminar boundary layer over the suction surface separates and reattaches with significant turbulence fluctuations. A new 3-equation transition model, the k-kL-ω model, was used to simulate this flow. Predicted locations of the separation bubble, and profiles of velocity and turbulence fluctuations on blade-normal lines at various stations along the blade were found to be quite close to measurements. Suction surface pressure distributions were not as close at the lower Re. The solution with the standard k-ω SST model showed significant differences in all quantities. At Re = 640,000 transition occurs earlier and it is a turbulent boundary layer that separates near the trailing edge. The solution with the Reynolds stress model was found to be quite close to the experiment in the separated region also, unlike the k-ω SST solution. Three-dimensional computations were performed at Re = 380,000 and 640,000. In both cases there were no significant differences between the midspan solution from 3D computations and the 2D solutions. However, the 3D solutions exhibited flow features observed in the experiments — the nearly 2D structure of the flow over most of the span at 380,000 and the spanwise growth of corner vortices from the endwall at 640,000.


Author(s):  
Robert Leipold ◽  
Matthias Boese ◽  
Leonhard Fottner

A highly loaded compressor cascade which features a chord length that is ten times larger than in real turbomachinary is used to perform an investigation of the influence of technical surface roughness. The surface structure of a precision forged blade was engraved in two 0.3mm thick sheets of copper with the above mentioned enlarging factor (Leipold and Fottner, 1998). To avoid additional effects due to thickening of the blade contour the sheets of copper are applied as inlay’s to the pressure and suction side. At the high speed cascade wind tunnel the profile pressure distribution and the total pressure distribution at the exit measurement plane were measured for the rough and the smooth blade for a variation of inlet flow angle and inlet Reynolds number. For some interesting flow conditions the boundary layer development was investigated with the laser-two-focus anemometry and the one-dimensional hot-wire anemometry. At low Reynolds numbers and small inlet angles a separation bubble is only slightly reduced due to surface roughness. The positive effect of a reduced separation bubble is overcompensated by a negative influence of surface roughness on the turbulent boundary layer downstream of the separation bubble. At high Reynolds numbers the flow over the rough blade shows a turbulent separation leading to high total pressure loss coefficients. The laser-two-focus measurements indicate a velocity deficit close to the trailing edge even at flow conditions where positive effects due to a reduction of the suction side separation have been expected. The turbulence intensity is reduced close downstream of the separation bubble but increased further downstream due to surface roughness. Thus not the front part but the rear part of the blade reacts sensitively on surface roughness.


Sign in / Sign up

Export Citation Format

Share Document