Skewness effects on the turbulence structure in a high-speed compressible and multi-component inert mixing layers

2021 ◽  
Author(s):  
Radouan Boukharfane ◽  
Aimad Er-raiy ◽  
Matteo Parsani ◽  
Bilel Hadri
2003 ◽  
Vol 475 ◽  
pp. 101-145 ◽  
Author(s):  
NICOLAS FORESTIER ◽  
LAURENT JACQUIN ◽  
PHILIPPE GEFFROY

The flow over a cavity at a Mach number 0.8 is considered. The cavity is deep with an aspect ratio (length over depth) L/D = 0.42. This deep cavity flow exhibits several features that makes it different from shallower cavities. It is subjected to very regular self-sustained oscillations with a highly two-dimensional and periodic organization of the mixing layer over the cavity. This is revealed by means of a high-speed schlieren technique. Analysis of pressure signals shows that the first tone mode is the strongest, the others being close to harmonics. This departs from shallower cavity flows where the tones are usually predicted well by the standard Rossiter’s model. A two-component laser-Doppler velocimetry system is also used to characterize the phase-averaged properties of the flow. It is shown that the formation of coherent vortices in the region close to the boundary layer separation has some resemblance to the ‘collective interaction mechanism’ introduced by Ho & Huang (1982) to describe mixing layers subjected to strong sub-harmonic forcing. Otherwise, the conditional statistics show close similarities with those found in classical forced mixing layers except for the production of random perturbations, which reaches a maximum in the structure centres, not in the hyperbolic regions with which turbulence production is usually associated. An attempt is made to relate this difference to the elliptic instability that may be observed here thanks to the particularly well-organized nature of the flow.


AIAA Journal ◽  
1994 ◽  
Vol 32 (7) ◽  
pp. 1531-1533 ◽  
Author(s):  
Rodney D. W. Bowersox ◽  
Joseph A. Schetz

1998 ◽  
Vol 356 ◽  
pp. 25-64 ◽  
Author(s):  
M. F. MILLER ◽  
C. T. BOWMAN ◽  
M. G. MUNGAL

Experiments were conducted to investigate the effect of compressibility on turbulent reacting mixing layers with moderate heat release. Side- and plan-view visualizations of the reacting mixing layers, which were formed between a high-speed high-temperature vitiated-air stream and a low-speed ambient-temperature hydrogen stream, were obtained using a combined OH/acetone planar laser-induced fluorescence imaging technique. The instantaneous images of OH provide two-dimensional maps of the regions of combustion, and similar images of acetone, which was seeded into the fuel stream, provide maps of the regions of unburned fuel. Two low-compressibility (Mc=0.32, 0.35) reacting mixing layers with differing density ratios and one high-compressibility (Mc=0.70) reacting mixing layer were studied. Higher average acetone signals were measured in the compressible mixing layer than in its low-compressibility counterpart (i.e. same density ratio), indicating a lower entrainment ratio. Additionally, the compressible mixing layer had slightly wider regions of OH and 50% higher OH signals, which was an unexpected result since lowering the entrainment ratio had the opposite effect at low compressibilities. The large-scale structural changes induced by compressibility are believed to be primarily responsible for the difference in the behaviour of the high- and low-compressibility reacting mixing layers. It is proposed that the coexistence of broad regions of OH and high acetone signals is a manifestation of a more biased distribution of mixture compositions in the compressible mixing layer. Other mechanisms through which compressibility can affect the combustion are discussed.


1994 ◽  
Vol 25 (1) ◽  
pp. 1743-1750 ◽  
Author(s):  
Jerry M. Seitzman ◽  
Michael F. Miller ◽  
Tobin C. Island ◽  
Ronald K. Hanson

2017 ◽  
Vol 822 ◽  
pp. 186-201 ◽  
Author(s):  
Kazuhiko Suga ◽  
Yuka Nakagawa ◽  
Masayuki Kaneda

Spanwise flow field measurements are carried out for turbulent flows in channels with permeable bottom walls by particle image velocimetry (PIV) to understand the effects of the wall permeability on turbulence structure near porous walls. The porous media used are three kinds of foamed ceramics which have the same porosities (0.8) but different permeabilities. The turbulent flow fields in spanwise planes are discussed using instantaneous and statistical measurement data. At a small permeability Reynolds number ($Re_{K}$), low-speed and high-speed streaks, which are similar to those of solid-wall turbulence, are observed near the walls while at a large $Re_{K}$ the observed structure is very different from that of the solid-wall turbulence. It is found that the obtained spanwise scales of the structure can be reasonably correlated with the wall normal distance plus the zero-plane displacement which is estimated from the mean velocity profile. With the distribution profiles of the spanwise streak spacing and integral length scales, the transitional change of the turbulence structure over permeable walls is discussed.


Fuel ◽  
2017 ◽  
Vol 191 ◽  
pp. 176-189 ◽  
Author(s):  
Zhaoxin Ren ◽  
Bing Wang ◽  
Qiaofeng Xie ◽  
Daolian Wang

1976 ◽  
Vol 98 (3) ◽  
pp. 390-399 ◽  
Author(s):  
D. Eckardt

Detailed accurate measurements of velocities, directions, and fluctuation intensities were performed with a newly developed laser velocimeter in the internal flow field of a radial discharge impeller, running at tip speeds up to 400 m/s. Relative flow distributions are presented in five measurement areas from inducer inlet to impeller discharge. The impeller flow pattern, which coincides largely with potential-theory calculations in the axial inducer, becomes more and more reversed when the flow separates from the blade suction side, developing a rapidly increasing wake in the radial impeller. The observed secondary flow pattern and effects of channel curvature and system rotation on turbulence structure are discussed with respect to separation onset and jet/wake interaction.


AIAA Journal ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 966-979 ◽  
Author(s):  
César Huete ◽  
Javier Urzay ◽  
Antonio L. Sánchez ◽  
Forman A. Williams

Sign in / Sign up

Export Citation Format

Share Document