Impact Angle Constrained Guidance Law for Intercepting Non-maneuvering Targets Avoiding Obstacles

2022 ◽  
Author(s):  
Prajapati D. Dharmendrabhai ◽  
Akash Gholap ◽  
Nikhil K. Singh ◽  
Sikha Hota
Author(s):  
Zhou Zhiming ◽  
Xiaoxian Yao

In this paper, the impact angle control problem is investigated by applying the polynomial shaping method. By shaping the light-of-sight angle with relative range, a guidance law called range polynomial guidance is proposed, and the coefficients are determined by boundary conditions. The range polynomial guidance law can be applied to maneuvering targets. By profiling the seeker look angle with the light-of-sight angle, a guidance law called line-of-sight polynomial guidance is developed for impact angle control under a limitation on the seeker look angle. The line-of-sight polynomial guidance law is also effective in intercepting a non-maneuvering moving target at the desired impact angle. Guidance laws with different gain sets are discussed in this paper. The proposed guidance laws take the form of proportional navigation with a time-varying navigation gain. Nonlinear simulations are performed to validate the efficacy of the proposed guidance laws in various engagement conditions. Comparison with other studies demonstrates the practicality and flexibility of the proposed guidance laws in the design of desired impact angles and maximum look angles.


Author(s):  
Ronggang Wang ◽  
Shuo Tang

To intercept a higher-speed target in the terminal guidance phase, this paper proposes a generalized relative biased proportional navigation (BPN) law. In order to enlarge the capture domain of the classical proportional navigation (PN) law and make full use of the maneuverability of a missile, the paper designs time-varying navigation coefficients; thus the modified PN guidance law integrates the advantages of the PN guidance law with those of the retro-PN guidance law. In order to intercept high-speed targets with impact angle constraints, the relative BPN law is introduced, and the impact angle is achieved by controlling the relative flight-path angle. In order to improve the performance of the guidance law for intercepting higher-speed maneuvering targets, some compensation measures are designed for guidance commands. Extensive simulations are conducted to verify the design features of the proportional navigation law.


Author(s):  
Min-Guk Seo ◽  
Chang-Hun Lee ◽  
Tae-Hun Kim

A new design method for trajectory shaping guidance laws with the impact angle constraint is proposed in this study. The basic idea is that the multiplier introduced to combine the equations for the terminal constraints is used to shape a flight trajectory as desired. To this end, the general form of impact angle control guidance (IACG) is first derived as a function of an arbitrary constraint-combining multiplier using the optimal control. We reveal that the constraint-combining multiplier satisfying the kinematics can be expressed as a function of state variables. From this result, the constraint-combining multiplier to achieve a desired trajectory can be obtained. Accordingly, when the desired trajectory is designed to satisfy the terminal constraints, the proposed method directly can provide a closed form of IACG laws that can achieve the desired trajectory. The potential significance of the proposed result is that various trajectory shaping IACG laws that can cope with various guidance goals can be readily determined compared to existing approaches. In this study, several examples are shown to validate the proposed method. The results also indicate that previous IACG laws belong to the subset of the proposed result. Finally, the characteristics of the proposed guidance laws are analyzed through numerical simulations.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

Author(s):  
Jeong-Hun Kim ◽  
Sang-Sup Park ◽  
Kuk-Kwon Park ◽  
Chang-Kyung Ryoo

Sign in / Sign up

Export Citation Format

Share Document