Reynolds Number and Freestream Shear Effects on a NACA 0012 Airfoil in the Reynolds Number Range 10,000-30,000

2022 ◽  
Author(s):  
Mitchell B. Albrecht ◽  
David A. Olson ◽  
Ahmed M. Naguib ◽  
Manoochehr Koochesfahani
1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 844 ◽  
Author(s):  
Wasim Raza ◽  
Kwang-Yong Kim

The present work proposes a planar micromixer design comprising hybrid mixing modules of split-and-recombine units and curved channels with radial baffles. The mixing performance was evaluated numerically by solving the continuity and momentum equations along with the advection-diffusion equation in a Reynolds number range of 0.1–80. The variance of the concentration of the mixed species was considered to quantify the mixing index. The micromixer showed far better mixing performance over whole Reynolds number range than an earlier split-and-recombine micromixer. The mixer achieved mixing indices greater than 90% at Re ≥ 20 and a mixing index of 99.8% at Re = 80. The response of the mixing quality to the change of three geometrical parameters was also studied. A mixing index over 80% was achieved within 63% of the full length at Re = 20.


Author(s):  
Noriyuki Furuichi ◽  
Kar-Hooi Cheong ◽  
Yoshiya Terao ◽  
Shinichi Nakao ◽  
Keiji Fujita ◽  
...  

Discharge coefficients for three flow nozzles based on ASME PTC 6 are measured under many flow conditions at AIST, NMIJ and PTB. The uncertainty of the measurements is from 0.04% to 0.1% and the Reynolds number range is from 1.3×105 to 1.4×107. The discharge coefficients obtained by these experiments is not exactly consistent to one given by PTC 6 for all examined Reynolds number range. The discharge coefficient is influenced by the size of tap diameter even if at the lower Reynolds number region. Experimental results for the tap of 5 mm and 6 mm diameter do not satisfy the requirements based on the validation procedures and the criteria given by PTC 6. The limit of the size of tap diameter determined in PTC 6 is inconsistent with the validation check procedures of the calibration result. An enhanced methodology including the term of the tap diameter is recommended. Otherwise, it is recommended that the calibration test should be performed at as high Reynolds number as possible and the size of tap diameter is desirable to be as small as possible to obtain the discharge coefficient with high accuracy.


1992 ◽  
Vol 114 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Y. C. Leung ◽  
N. W. M. Ko ◽  
K. M. Tang

Measurements of the mean pressure distributions and Strouhal numbers on partially grooved cylinders with different groove subtend angles were made over a Reynolds number range of 2.0×104 to 1.3×105 which was within the subcritical regime of smooth cylinder. The Strouhal number, pressure distributions, and their respective coefficients were found to be a function of the groove subtend angles. In general, a progressive shift of the flow regime to lower Reynolds number was observed with higher subtend angle and a subtend angle of 75 deg was found for optimum drag reduction. With the configuration of asymmetrical groove surface, lower drag, and higher lift coefficients were obtained within the same Reynolds number range. Wake traverse and boundary layer results of the asymmetric grooved cylinder indicated that the flows at the smooth and groove surfaces lied within different flow regimes and a downward shift of the wake.


2006 ◽  
Vol 110 (1105) ◽  
pp. 145-156 ◽  
Author(s):  
F. Lanson ◽  
J. L. Stollery

Abstract A ‘two dimensional’ air intake comprising a wedge followed by an isentropic compression has been tested in the Cranfield Gun Tunnel at Mach 8·2. These tests were performed to investigate qualitatively the intake flow starting process. The effects of cowl position, Reynolds number, boundary-layer trip and introduction of a small restriction in the intake duct were investigated. Schlieren pictures of the flow on the compression surface and around the intake entrance were taken. Results showed that the intake would operate over the Reynolds number range tested. Tests with a laminar boundary layer demonstrated the principal influence of the Reynolds number on the boundary-layer growth and consequently on the flow structure in the intake entrance. In contrast boundary layer tripping produced little variation in flow pattern over the Reynolds number range tested. The cowl lip position appeared to have a strong effect on the intake performance. The only parameter which prevented the intake from starting was the introduction of a restriction in the intake duct. The experimental data obtained were in good qualitative agreement with the CFD predictions. Finally, these experimental results indicated a good intake flow starting process over multiple changes of parameters.


Sign in / Sign up

Export Citation Format

Share Document