Heat Transfer to an Incompressible Turbulent Boundary Layer and Estimation of Heat-Transfer Coefficients at Supersonic Nozzle Throats

Author(s):  
MERWIN SIBULKIN
1962 ◽  
Vol 84 (3) ◽  
pp. 235-242 ◽  
Author(s):  
R. A. Seban ◽  
L. H. Back

The effectiveness and the heat transfer have been measured in a system involving the tangential injection of air from a single spanwise slot into the turbulent boundary layer of an external air stream, with the velocity of the external stream increasing in a way that concentrated the acceleration in a region downstream of the initial mixing zone. The effectiveness was changed but little from the value that would have existed had the free-stream velocity remained at its initial value and both temperature profiles and analytical considerations show that this invariability of the effectiveness is associated with thermal boundary-layer thicknesses that are much larger than the hydrodynamic thicknesses. Heat-transfer coefficients are shown to be predictable from existing information provided that the momentum thickness Reynolds number is large enough.


1967 ◽  
Vol 89 (4) ◽  
pp. 341-350 ◽  
Author(s):  
D. R. Boldman ◽  
J. F. Schmidt ◽  
R. C. Ehlers

Nozzle boundary layer and heat transfer measurements are presented for nozzles having half angles of convergence of 30 and 60 deg, each operating in conjunction with a short and long uncooled pipe inlet. The long inlet, which produced a fully developed turbulent boundary layer at the nozzle entrance, did not significantly alter the nozzle heat transfer distribution relative to values obtained with the short pipe inlet. Peak heat transfer coefficients for the high convergence nozzle were nearly 40 percent higher than the peak value for the 30 deg half angle of convergence nozzle. Measured heat transfer coefficients were compared to predictions based on a boundary layer theory and a pipe flow type correlation.


1969 ◽  
Vol 91 (4) ◽  
pp. 239-244 ◽  
Author(s):  
James A. Miller

Measurements of local heat-transfer coefficients in the fully established oscillating turbulent boundary layer over a flat plate are reported. In the range of frequencies from 0.1 to 200 cps and amplitudes from 8 to 92 percent of the freestream mean velocity, increases in local Nusselt numbers of 3 to 5 percent were found. It is concluded that substantial increases in local coefficients, sometimes reported in oscillating flows of low standing wave ratio, may be traced to reduced transition Reynolds numbers.


Author(s):  
J. A. Miller

Measurements of local heat transfer coefficients in the fully established oscillating turbulent boundary layer over a flat plate are reported. In the range of frequencies from 0.1 to 200 cps and amplitudes from 8 to 92 percent of the freestream mean velocity increases in local Nusselt numbers of 3 to 5 percent were found. It is concluded that substantial increases in local coefficients sometimes reported in oscillating flows of low standing wave ratio may be traced to reduced transition Reynolds numbers.


Author(s):  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén ◽  
Valery Chernoray ◽  
Hans Abrahamsson

In the present study, the heat transfer characteristics on the suction and pressure sides of an outlet guide vane (OGV) are investigated by using liquid crystal thermography (LCT) method in a linear cascade. Because the OGV has a complex curved surface, it is necessary to calibrate the LCT by taking into account the effect of viewing angles of the camera. Based on the calibration results, heat transfer measurements of the OGV were conducted. Both on- and off-design conditions were tested, where the incidence angles of the OGV were 25 degrees and −25 degrees, respectively. The Reynolds numbers, based on the axial flow velocity and the chord length, were 300,000 and 450,000. In addition, heat transfer on suction side of the OGV with +40 degrees incidence angle was measured. The results indicate that the Reynolds number and incidence angle have considerable influences upon the heat transfer on both pressure and suction surfaces. For on-design conditions, laminar-turbulent boundary layer transitions are on both sides, but no flow separation occurs; on the contrary, for off-design conditions, the position of laminar-turbulent boundary layer transition is significantly displaced downstream on the suction surface, and a separation occurs from the leading edge on the pressure surface. As expected, larger Reynolds number gives higher heat transfer coefficients on both sides of the OGV.


1995 ◽  
Vol 117 (2) ◽  
pp. 248-254 ◽  
Author(s):  
C. Hu¨rst ◽  
A. Schulz ◽  
S. Wittig

The present study compares measured and computed heat transfer coefficients for high-speed boundary layer nozzle flows under engine Reynolds number conditions (U∞=230 ÷ 880 m/s, Re* = 0.37 ÷ 1.07 × 106). Experimental data have been obtained by heat transfer measurements in a two-dimensional, nonsymmetric, convergent–divergent nozzle. The nozzle wall is convectively cooled using water passages. The coolant heat transfer data and nozzle surface temperatures are used as boundary conditions for a three-dimensional finite-element code, which is employed to calculate the temperature distribution inside the nozzle wall. Heat transfer coefficients along the hot gas nozzle wall are derived from the temperature gradients normal to the surface. The results are compared with numerical heat transfer predictions using the low-Reynolds-number k–ε turbulence model by Lam and Bremhorst. Influence of compressibility in the transport equations for the turbulence properties is taken into account by using the local averaged density. The results confirm that this simplification leads to good results for transonic and low supersonic flows.


1986 ◽  
Vol 108 (1) ◽  
pp. 116-123 ◽  
Author(s):  
K. Rued ◽  
S. Wittig

The accurate prediction of heat transfer coefficients on cooled gas turbine blades requires consideration of various influence parameters. The present study continues previous work with special efforts to determine the separate effects of each of several parameters important in turbine flow. Heat transfer and boundary layer measurements were performed along a cooled flat plate with various freestream turbulence levels (Tu = 1.6−11 percent), pressure gradients (k = 0−6 × 10−6), and cooling intensities (Tw/T∞ = 1.0−0.53). Whereas the majority of previously available results were obtained from adiabatic or only slightly heated surfaces, the present study is directed mainly toward application on highly cooled surfaces as found in gas turbine engines.


2006 ◽  
Vol 129 (6) ◽  
pp. 727-734 ◽  
Author(s):  
H. Sakamoto ◽  
F. A. Kulacki

Measurements are reported of heat transfer coefficients in steady natural convection on a vertical constant flux plate embedded in a saturated porous medium. Results show that heat transfer coefficients can be adequately determined via a Darcy-based model, and our results confirm a correlation proposed by Bejan [Int. J. Heat Mass Transfer. 26(9), 1339–1346 (1983)]. It is speculated that the reason that the Darcy model works well in the present case is that the porous medium has a lower effective Prandtl number near the wall than in the bulk medium. The factors that contribute to this effect include the thinning of the boundary layer near the wall and an increase of effective thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document