Transport Aircraft Design and Operations Meeting

1964 ◽  
Aerospace ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 91 ◽  
Author(s):  
Can Alkaya ◽  
Ashish Alex Sam ◽  
Apostolos Pesyridis

The conceptual aircraft design and its integration with a combined cycle engine for hypersonic cruise at Mach 8 is documented in this paper. The paper describes the process taken to develop a hypersonic aircraft from a conceptual approach. The discussion also includes the design and CFD analysis of the integrated combined cycle engine. A final conceptual hypersonic transport aircraft with an integrated combined cycle engine was achieved through this study. According to the analysis carried out, the aircraft is able to take-off and land at the airports it is intended to be used and will be able to generate enough thrust to sustain hypersonic cruise at an altitude of 30 km.


2012 ◽  
Vol 225 ◽  
pp. 397-402 ◽  
Author(s):  
Erwin Sulaeman

To maintain flight safety, all transport aircraft designs should satisfy airworthiness standard regulation. One fundamental issue of the aircraft design that relates directly to flight safety as well as commercial aspect of the aircraft is on the evaluation of the maximum speed within the designated flight envelope. In the present work, a study is performed to evaluate the negative altitude requirement related to aeroelastic instability analysis as one requirement that should be fulfilled to design the maximum speed. An analytical derivation to obtain the negative altitude is performed based on the airworthiness requirement that a transport airplane must be designed to be free from aeroelastic instability within the flight envelope encompassed by the dive speed or dive Mach number versus altitude envelope enlarged at all points by an increase of 15% in equivalent airspeed at both constant Mach number and constant altitude. To take into account variation in atmospheric condition as function of altitude, the international standard regulation is used as referenced. The analysis result shows that a single negative altitude can be obtained using these criteria regardless of the dive speed or dive Mach number. A further discussion on the application of the negative altitude concept to UAV (Unmanned Aerial Vehicle), in relation to UAV Standard Airworthiness Requirement STANAG 4671, is presented.


2006 ◽  
Vol 110 (1107) ◽  
pp. 265-288 ◽  
Author(s):  
S. Raghunathan ◽  
E. Benard ◽  
J. K. Watterson ◽  
R. K. Cooper ◽  
R. Curran ◽  
...  

AbstractCustomer requirements and vision in aerospace dictate that the next generation of civil transport aircraft should have a strong emphasis on increased safety, reduced environmental impact and reduced cost without sacrificing performance. In this context, the School of Mechanical and Aerospace Engineering at the Queen’s University of Belfast and Bombardier have, in recent years, been conducting research into some of the key aerodynamic technologies for the next generation of aircraft engine nacelles. Investigations have been performed into anti-icing technology, efficient thrust reversal, engine fire zone safety, life cycle cost and integration of the foregoing with other considerations in engine and aircraft design. A unique correlation for heat transfer in an anti-icing system has been developed. The effect of normal vibration on heat transfer in such systems has been found to be negligible. It has been shown that carefully designed natural blockage thrust reversers without a cascade can reduce aircraft weight with only a small sacrifice in the reversed thrust. A good understanding of the pressure relief doors and techniques to improve the performance of such doors have been developed. Trade off studies between aerodynamics, manufacturing and assembly of engine nacelles have shown the potential for a significant reduction in life cycle cost.


2019 ◽  
Vol 11 (2) ◽  
pp. 449-459
Author(s):  
A. Seitz ◽  
A. Hübner ◽  
K. Risse

Abstract In order to further raise the Technology Readiness Level (TRL) of laminar technologies in aircraft design the German Aerospace Center DLR conducted an internal project called TuLam (Toughen up Laminar Technology), which lasted from 2014 to 2017. In the course of the project two technology paths were pursued, namely Natural Laminar Flow (NLF) and Hybrid Laminar Flow Control (HLFC). Within the frame of the NLF path a short and medium range transport aircraft with forward swept laminar wing was designed. The present paper is focused on the aerodynamic design of the forward swept wing in cruise flight. As a special feature in comparison with previous designs of transonic laminar flow wings a trailing edge flap of 10% chord depth is employed to allow for an adaptation of the laminar bucket to off-design conditions. The resulting wing was assessed on overall aircraft level with respect to its fuel reduction potential, whereby the CSR-01 configuration, essentially a re-design of the Airbus A320-200, was used as a reference.


Sign in / Sign up

Export Citation Format

Share Document