conceptual aircraft design
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Simon Gradel ◽  
Benedikt Aigner ◽  
Eike Stumpf

AbstractTraditional system technology modeling in conceptual aircraft design mainly relies on empirical knowledge and methods derived from conventional systems, for which valid system architecture designs are known. Since these systems have been proven valid especially from a safety perspective, detailed system safety analyses are usually not necessary. For unconventional systems and innovative technologies, on contrary, new architectures have to be designed and system safety has, therefore, to be taken into account. Therefore, the application of model-based safety assessment (MBSA) for designing system architectures in conceptual aircraft design studies is proposed. A MBSA approach based on a Simulink architecture model is presented which is tailored for use in conceptual design studies. It is applied to the cryocooling system of a hybrid-electric powertrain architecture from an already-published study. The original architecture as well as possible architecture alternatives are investigated. As a result, a safer architecture version with lower number of components can be proposed. The application example indicates that using MBSA in conceptual design benefits the latter by providing insights into safety properties of the system and by pointing out architecture safety weaknesses. This could result in safer, thus more realistic system architectures.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 210
Author(s):  
Michel Nöding ◽  
Lothar Bertsch

ICAO Annex 16 regulations are used to certify the acoustic performance of subsonic transport aircraft. Each aircraft is classified according to the measured EPNL levels at specific certification locations along the approach and departure. By simulating this certification process, it becomes possible to identify all relevant parameters and assess promising measures to reduce the noise certification levels in compliance with the underlying ICAO regulations, i.e., allowable operating conditions of the aircraft. Furthermore, simulation is the only way to enable an assessment of novel technology and non-existing vehicle concepts, which is the main motivation behind the presented research activities. Consequently, the ICAO Annex 16 regulations are integrated into an existing noise simulation framework at DLR, and the virtual noise certification of novel aircraft concepts is realized at the conceptual design phase. The predicted certification levels can be directly selected as design objectives in order to realize an advantageous ICAO noise category for a new aircraft design, i.e., simultaneously accounting for the design and the resulting flight performance. A detailed assessment and identification of operational limits and allowable flight procedures for each conceptual aircraft design under consideration is enabled. Sensitivity studies can be performed for the relevant input parameters that influence the predicted noise certification levels. Specific noise sources with a dominating impact on the certification noise levels can be identified, and promising additional low-noise measures can be applied within the conceptual design phase. The overall simulation process is applied to existing vehicles in order to assess the validity of the simulation resultsfcompared to published data. Thereafter, the process is applied to some DLR low-noise aircraft concepts to evaluate their noise certification levels. These results can then be compared to other standard noise metrics that are typically applied in order to describe aircraft noise, e.g., SEL isocontour areas. It can be demonstrated that certain technologies can significantly reduce the noise impact along most of an approach or departure flight track but have only a limited influence on the noise certification levels and vice versa. Finally, an outlook of the ongoing developments is provided, in order to apply the new simulation process to supersonic aircraft. Newly proposed regulations for such concepts are implemented into the process in order to evaluate these new regulations and enable direct comparison with existing regulations.


2020 ◽  
Vol 57 (6) ◽  
pp. 1202-1211
Author(s):  
Ana Vieira ◽  
Marc Koch ◽  
Lothar Bertsch ◽  
Mirjam Snellen ◽  
Dick G. Simons

2020 ◽  
Vol 1 ◽  
pp. 2275-2284
Author(s):  
S. El Fassi ◽  
M. D. Guenov ◽  
A. Riaz

AbstractPresented is an approach to support margin allocation and management via a graph-theoretical network of assumptions. In contrast to the document-centric approach, the network captures assumptions dependencies, and enables an algorithmic process supporting margin allocation and management. Ultimately, this methodology is intended to assist decision-makers in managing assumptions and examining their impact on an architecture. Explicitly linking margins to assumptions allows to support mitigating their risk of invalidity. The approach is demonstrated with a conceptual aircraft design example.


2020 ◽  
Vol 247 ◽  
pp. 119477 ◽  
Author(s):  
João Ribeiro ◽  
Frederico Afonso ◽  
Inês Ribeiro ◽  
Bruna Ferreira ◽  
Hugo Policarpo ◽  
...  

Aerospace ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 91 ◽  
Author(s):  
Can Alkaya ◽  
Ashish Alex Sam ◽  
Apostolos Pesyridis

The conceptual aircraft design and its integration with a combined cycle engine for hypersonic cruise at Mach 8 is documented in this paper. The paper describes the process taken to develop a hypersonic aircraft from a conceptual approach. The discussion also includes the design and CFD analysis of the integrated combined cycle engine. A final conceptual hypersonic transport aircraft with an integrated combined cycle engine was achieved through this study. According to the analysis carried out, the aircraft is able to take-off and land at the airports it is intended to be used and will be able to generate enough thrust to sustain hypersonic cruise at an altitude of 30 km.


Sign in / Sign up

Export Citation Format

Share Document