Neanderthal Admixture in Current Human Populations

2012 ◽  
Author(s):  
Robert K Lowery
2021 ◽  
Author(s):  
Moisès Coll Macià ◽  
Laurits Skov ◽  
Benjamin Marco Peter ◽  
Mikkel Heide Schierup

AbstractAfter the main out-of-Africa event, humans interbred with Neanderthals leaving 1-2% of Neanderthal DNA scattered in small fragments in all non-African genomes today1,2. Here we investigate the size distribution of these fragments in non-African genomes3. We find consistent differences in fragment length distributions across Eurasia with 11% longer fragments in East Asians than in West Eurasians. By comparing extant populations and ancient samples, we show that these differences are due to a different rate of decay in length by recombination since the Neanderthal admixture. In line with this, we observe a strong correlation between the average fragment length and the accumulation of derived mutations, similar to what is expected by changing the ages at reproduction as estimated from trio studies4. Altogether, our results suggest consistent differences in the generation interval across Eurasia, by up to 20% (e.g. 25 versus 30 years), over the past 40,000 years. We use sex-specific accumulations of derived alleles to infer how these changes in generation intervals between geographical regions could have been mainly driven by shifts in either male or female age of reproduction, or both. We also find that previously reported variation in the mutational spectrum5 may be largely explained by changes to the generation interval and not by changes to the underlying mutational mechanism. We conclude that Neanderthal fragment lengths provide unique insight into differences of a key demographic parameter among human populations over the recent history.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Moisès Coll Macià ◽  
Laurits Skov ◽  
Benjamin Marco Peter ◽  
Mikkel Heide Schierup

AbstractAfter the main Out-of-Africa event, humans interbred with Neanderthals leaving 1–2% of Neanderthal DNA scattered in small fragments in all non-African genomes today. Here we investigate what can be learned about human demographic processes from the size distribution of these fragments. We observe differences in fragment length across Eurasia with 12% longer fragments in East Asians than West Eurasians. Comparisons between extant populations with ancient samples show that these differences are caused by different rates of decay in length by recombination since the Neanderthal admixture. In concordance, we observe a strong correlation between the average fragment length and the mutation accumulation, similar to what is expected by changing the ages at reproduction as estimated from trio studies. Altogether, our results suggest differences in the generation interval across Eurasia, by up 10–20%, over the past 40,000 years. We use sex-specific mutation signatures to infer whether these changes were driven by shifts in either male or female age at reproduction, or both. We also find that previously reported variation in the mutational spectrum may be largely explained by changes to the generation interval. We conclude that Neanderthal fragment lengths provide unique insight into differences among human populations over recent history.


2015 ◽  
Author(s):  
Kelley Harris ◽  
Rasmus Nielsen

AbstractApproximately 2-4% of genetic material in human populations outside Africa is derived from Neanderthals who interbred with anatomically modern humans. Recent studies have shown that this Neanderthal DNA is depleted around functional genomic regions; this has been suggested to be a consequence of harmful epistatic interactions between human and Neanderthal alleles. However, using published estimates of Neanderthal inbreeding and the distribution of mutational fitness effects, we infer that Neanderthals had at least 40% lower fitness than humans on average; this increased load predicts the reduction in Neanderthal introgression around genes without the need to invoke epistasis. We also predict a residual Neanderthal mutational load in non-Africans, leading to a fitness reduction of at least 0.5%. This effect of Neanderthal admixture has been left out of previous debate on mutation load differences between Africans and non-Africans. We also show that if many deleterious mutations are recessive, the Neanderthal admixture fraction could increase over time due to the protective effect of Neanderthal haplotypes against deleterious alleles that arose recently in the human population. This might partially explain why so many organisms retain gene flow from other species and appear to derive adaptive benefits from introgression.


2020 ◽  
Vol 43 ◽  
Author(s):  
Andrea Bender

Abstract Tomasello argues in the target article that, in generalizing the concrete obligations originating from interdependent collaboration to one's entire cultural group, humans become “ultra-cooperators.” But are all human populations cooperative in similar ways? Based on cross-cultural studies and my own fieldwork in Polynesia, I argue that cooperation varies along several dimensions, and that the underlying sense of obligation is culturally modulated.


Crisis ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Christopher M. Bloom ◽  
Shareen Holly ◽  
Adam M. P. Miller

Background: Historically, the field of self-injury has distinguished between the behaviors exhibited among individuals with a developmental disability (self-injurious behaviors; SIB) and those present within a normative population (nonsuicidal self-injury; NSSI),which typically result as a response to perceived stress. More recently, however, conclusions about NSSI have been drawn from lines of animal research aimed at examining the neurobiological mechanisms of SIB. Despite some functional similarity between SIB and NSSI, no empirical investigation has provided precedent for the application of SIB-targeted animal research as justification for pharmacological interventions in populations demonstrating NSSI. Aims: The present study examined this question directly, by simulating an animal model of SIB in rodents injected with pemoline and systematically manipulating stress conditions in order to monitor rates of self-injury. Methods: Sham controls and experimental animals injected with pemoline (200 mg/kg) were assigned to either a low stress (discriminated positive reinforcement) or high stress (discriminated avoidance) group and compared on the dependent measures of self-inflicted injury prevalence and severity. Results: The manipulation of stress conditions did not impact the rate of self-injury demonstrated by the rats. The results do not support a model of stress-induced SIB in rodents. Conclusions: Current findings provide evidence for caution in the development of pharmacotherapies of NSSI in human populations based on CNS stimulant models. Theoretical implications are discussed with respect to antecedent factors such as preinjury arousal level and environmental stress.


PARADIGMI ◽  
2017 ◽  
pp. 113-122
Author(s):  
Martina Lari ◽  
David Caramelli
Keyword(s):  

2018 ◽  
Author(s):  
Audrey Melvin ◽  
Brian Lam ◽  
Claudia Langenberg ◽  
Maura Agostini ◽  
Erik Schoenmakers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document