scholarly journals Research of partial discharge characteristics features in bushings

2021 ◽  
pp. 26-32
Author(s):  
D. A. Polyakov ◽  
◽  
N. A. Tereshchenko ◽  
K. I. Nikitin ◽  
◽  
...  

The paper is devoted to partial discharge measurement and analysis in switchgear bushings. PD bushing structure analysis is described to assess possible defect sources in bushings. An experimental 10 kV bushing sample with the natural defect is obtained from the bushings’ manufacturer. It is tested using the PD measurement technique. Test results showed significant PD intensity at voltages from 12 kV and higher. We have an assumption that a part of registered discharges occurred in the air close to the high voltage electrode sharp edges. To check this assumption we grind them off and repeated the test. The second test does not show considerable PD characteristics change. Therefore, we assume that the bushing sample has an inner defect because the bushing’s surface is not contaminated to generate surficial discharges. The bushing is researched by a destroying method for defect localization. However, inside the bushing, possible defect locations are not found. It might be connected with the fact that the defect could not be found visually at the test time or the defect is located in the gasket between the high voltage electrode and insulator’s body. Besides, there are determined features of phase-resolved partial discharge patterns in switchgear bushings.

2013 ◽  
Vol 20 (6) ◽  
pp. 2009-2016 ◽  
Author(s):  
Marek Florkowski ◽  
Barbara Florkowska ◽  
Jakub Furgal ◽  
Pawel Zydron

Vestnik IGEU ◽  
2019 ◽  
pp. 32-42
Author(s):  
A.V. Gusenkov ◽  
V.D. Lebedev ◽  
S.N. Litvinov ◽  
S.A. Slovesny ◽  
A.A. Yablokov

Power facilities are now implementing the concept of smart grid and its essential elements – high-voltage digital current and voltage transformers. However, the implementation of digital technologies is slowed down by the lack of operation experience and reliability indicators. One of the main causes of high-voltage equipment failures is insulation damage. The most informative parameters determined by insulation evaluation are partial discharge characteristics. There are rated values of these characteristics for rotating electrical machines and power transformers measured by external equipment. But the existing method of partial discharge analysis cannot be applied to digital current and voltage transformers as there are no criteria for tripping of the innovative equipment with comprehensive insulation. All this urges us to study the possibility to determine experimentally the characteristics of partial discharges in the insulation of digital current and voltage transformers by using embedded inductive sensors in order to develop a method for condition monitoring of digital current and voltage transformers and improving of their reliability. In this work, we have used a model of digital current and voltage transformers, a high-voltage test unit, a digital multi-input oscciloscope and inductive sensors. The experiment includes: detecting partial discharges in the model of digital current and voltage transformers by the external bridge connection, recording the voltage at which partial discharges occur in the simulated fault area, measuring the corresponding value of the apparent charge of the partial discharge, detecting partial discharges in the model of digital current and voltage transformers by a differential method with the help of embedded inductive sensors. The characteristics of partial discharges in the simulated fault area have been experimentally determined on a model of digital current and voltage transformers. The pulse voltage on the embedded inductive sensor corresponding to the apparent charge of 80 pC was equal to 600 mV at the test voltage of 2,7 kV. Embedded inductive sensors allow implementing the method of insulation condition monitoring for digital current and voltage transformers in accordance with the partial discharge characteristics both at the stages of production and operation extending the potential of the electronic (microprocessor) module and increasing the reliability of digital current and voltage transformers.


Author(s):  
Noor ‘Aliaa Awang ◽  
Faris Akmal Suhaini ◽  
Yanuar Z. Arief ◽  
Mohd Hafizi Ahmad ◽  
Noor Azlinda Ahmad ◽  
...  

Partial discharge (PD) may lead to the degradation of insulating materials and affect the lifetime of high voltage equipment. This paper describes the effect of relative humidity on PD characteristic of epoxy/boron nitride (BN) nanocomposite under high voltage (HV) stress. In this work, CIGRE Method II was utilized as an electrode configuration. BN nanofiller was chosen because of its high insulating properties with high thermal conductivity. The PD characteristics such as PD charge magnitude, PD number or occurrence, and average of PD charge during certain of ageing time under HV stress against relative humidity were examined. The results revealed that PD number of humid samples is higher about 8~14% compared to the normal ones. It is considered due to the decrease of surface resistance of the humid samples. The PD charge magnitudes of humid samples are slightly higher compared to the normal ones. The epoxy/BN nanocomposite has lesser PD number and magnitude compared to the neat epoxy samples.


2014 ◽  
Vol 543-547 ◽  
pp. 1046-1049
Author(s):  
Jing Gang Yang ◽  
Yong Yong Jia ◽  
Zhi Cheng Zhou ◽  
Jun Hao Li

Partial discharge (PD) is the important detection parameter for power equipment, with the development of high voltage test technology, PD detection under impulse voltage is more attention. In order to detect the partial discharge signal under the impulse voltage, this paper designs a high-frequency current sensor and broadband measurement impedance. A set of partial discharge measurement system under impulse voltage is built up. The frequency characteristics of current sensor and measurement impedance are detected. In order to test the measurement system, the PD signals of a needle defect under impulse voltage is detected, the test results show that the PD measurement system can detect the PD signals effectively.


2014 ◽  
Vol 989-994 ◽  
pp. 1260-1263
Author(s):  
Yue Heng Meng ◽  
Hui Qi Li ◽  
Yang Hu

In this paper, four original full typical UHF partial discharge signals are measured by using log-periodic antenna in 3-meter anechoic chamber environment. The relevance vector machine is applied for the study of partial discharge characteristics and the two relevance vector machine classifier are applied for the classification and identification of four partial discharge models. The experimental results are satisfactory. Compared with support vector machines, relevance vector machine can obtain more sparse classification model with probabilistic output value. It has a shorter test time and is more suitable for online testing. This method has a good prospect in partial discharge pattern recognition and online monitoring.


Sign in / Sign up

Export Citation Format

Share Document