scholarly journals Determination of static and dynamic forces for manufacture of corrugated belts for wind tunnel heat exchangers

Author(s):  
Yu. V. Shchipkova ◽  

The article presents the results of an experimental study aimed at determining the required load when rolling a corrugated heat exchanger belt for wind tunnels. The experiments are carried out on a horizontal milling machine model 6H81. The results of the experiment are applied to stainless steel tapes with a thickness of 0,3 to 0,4 mm.

Author(s):  
Yu. V. Shchipkova ◽  
◽  
A. Yu. Popov ◽  
Yu. A. Rogoza ◽  
D. A. Kormakov ◽  
...  

The efficiency of regenerative heat exchangers with heat storage nozzles made of rolled corrugated tapes depends on the type of their corrugation profile. The most effective form is a triangular one with sharp peaks and troughs. It is technically advisable to get corrugations of a given shape by rolling between two rollers. Determining the required contact load and forces is one of the main tasks when rolling corrugated belts. Insufficient load leads to incomplete formation of the profile, and excessive load leads to warping of the belt. The article presents the results of an experimental study aimed at determining the required load when rolling a corrugated heat exchanger belt for wind tunnels. Experiments and force measurements are carried out on a standard milling machine with a spring dynamometer. The results of the experiment are applied to stainless steel strips with a thickness of 0,3 to 0,4 mm and triangular fluting


2020 ◽  
Vol 5 (10) ◽  
pp. 1274-1280
Author(s):  
Alfred Gift Mwachugha ◽  
Jean Byiringiro ◽  
Harrison Ngetha ◽  
Thomas Carolus ◽  
Kathrin Stahl

A Prandtl probe is one of the standard instruments used for flow characterization in wind tunnel facilities. The convectional fabrication method of this instrument requires skilled artisanship, precision drilling, lathing and soldering of its several parts. This reflects into high costs of production in turn making wind energy studies expensive. With the adoption of additive manufacturing, the tooling costs, skills required and design to manufacture constraints can be addressed. This research presents a Prandtl probe that was designed using NX™ software, fabricated by desktop stereolithography additive manufacturing platform and validated in a wind tunnel for velocity range of 0 m/s to 51 m/s. This research attested the option of fabricating relatively cheap functional Prandtl probe with desktop stereolithography technology which can be used for accurate determination of flow quality in wind tunnels experiments. This provides various learning and research institution in developing countries that have already invested in additive desktop manufacturing technology certainty and a cheaper option to fabricate wind research instruments for use at their laboratories. Moreover, fabrication and validation of a 5-hole Prandtl probe can also be examined.


2012 ◽  
Vol 560-561 ◽  
pp. 156-160
Author(s):  
Lin Ping Lu ◽  
Liang Ying

The experiments on heat transfer coefficient, pressure drop and thermal stress were done to heat exchangers with corrugated tubes and staight tubes. By analyising and comparing the heat transfer coeffient, pressure drop in tube side and shell side and axial force and stress, some conclusions can be conducted that the corrugated tube heat exchanger has better heat transfer coeffient, higher pressure drop and much lower stress caused by temperatur difference, also, it has obvious advantages under the circumstance of low Reynolds number and high temperature difference.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Natalia Petrova ◽  
Abdel-Hakim Bouzid

Despite the fact that multipass shell-and-tube heat exchangers operating at high temperature are subject to frequent problems related to flange sealing, there is neither detailed explanations for the reasons of the failures nor an adequate solution to this problem. Specific geometry of multipass heat exchangers and the temperature difference between the inlet and the outlet fluids is responsible for the existence of a thermal circumferential gradient at the shell-to-channel bolted joint. However, existing flange design methods do not address nonaxisymmetrical temperature loading of the flanged joint assembly. The circumferential thermal gradient, as the cause of frequent failures to seal the flanged joints, is ignored. This paper outlines the analytical modeling of a flanged joint with a tube sheet of a multipass heat exchanger subjected to a nonaxisymmetrical thermal loading. A shell-and-tube heat exchanger of 51 in. diameter with cocurrent flow was used for analysis. The main steps of the theoretical analysis used for the determination of the circumferential temperature profiles and the thermal expansion displacements and distortions of the bolted joint components are given. The results from the proposed analytical model are compared with those obtained from finite element models.


Author(s):  
Boureima Kaboré ◽  
Germain Wende Pouiré Ouedraogo ◽  
Adama Ouedraogo ◽  
Sié Kam ◽  
Dieudonné Joseph Bathiebo

In the Sahelian zone, air conditioning in house by air-soil heat exchangers is an alternative in the context of insufficient of electrical energy. In this work, we carried out a numerical and experimental study of thermal efficiency of an air-soil heat exchanger. This study provided an estimation of thermal efficiency of an experimental air-soil heat exchanger during June, July and August 2016. Numerical results provided a better understanding of the influence of parameters such as tube length, air velocity and soil temperature on the thermal efficiency of this system.


2003 ◽  
Vol 125 (3) ◽  
pp. 527-530 ◽  
Author(s):  
Ahmad Fakheri

This paper presents a single closed form algebraic equation for the determination of the Log Mean Temperature Difference correction factor F for shell and tube heat exchangers having N shell passes and 2M tube passes per shell. The equation and its graphical presentation generalize the traditional equations and charts used for the determination of F. The equation presented is also useful in design, analysis and optimization of multi shell and tube heat exchanger, particularly for direct determination of the number of shells.


Author(s):  
Sarah Tioual-Demange ◽  
Gaëtan Bergin ◽  
Thierry Mazet ◽  
Luc de Camas

Abstract The sCO2-4-NPP european project aims to develop an innovative technology based on supercritical CO2 (sCO2) for heat removal to improve the safety of current and future nuclear power plants. The heat removal from the reactor core will be achieved with multiple highly compact self-propellant, self-launching, and self-sustaining cooling system modules, powered by a sCO2 Brayton cycle. Heat exchangers are one of the key components required for advanced Brayton cycles using supercritical CO2. Fives Cryo company, a brazed plates and fins heat exchangers manufacturer, with its expertise in thermal and hydraulic design and brazing fabrication is developing compact, and highly efficient stainless steel heat exchanger solution for sCO2 power cycles, thanks to their heat exchange capability with low pinch and high available flow sections. The aim of the development of this specific heat exchanger technology is to achieve an elevated degree of regeneration. For this matter, plates and fins heat exchanger is a very interesting solution to meet the desired thermal duty with low pressure drop leading to a reduction in size and capital cost. The enhancement of the mechanical integrity of plates and fins heat exchanger equipment would lead to compete with, and even outweigh, printed circuit heat exchangers technology, classically used for sCO2 Brayton cycles. sCO2 cycle conditions expose heat exchangers to severe conditions. Base material selection is essential, and for cost reasons, it is important to keep affordable heat-resistant austenitic stainless steel grades, much cheaper than a nickel-based alloy. Another advantage of high compactness of plates and fins heat exchangers is the diminution of the amount of material used in the heat exchanger manufacturing, decreasing even more its cost. The challenge here is to qualify stainless steel plates and fins heat exchangers mechanical resistance, at cycle operating conditions, and meet with pressure vessels codes and regulations according to nuclear requirements. One critical point in the development of the heat exchangers is the design of the fins. As secondary surface, they allow the maximization of heat transfer at low pressure drop. At the same time mechanical strength has to be guaranteed. To withstand high pressure, fins thickness has to be significant, which makes the implementation complicated. Efforts were dedicated to successfully obtain an optimal shape. Forming of fins was therefore improved compared to conventional techniques. Important work was undertaken to define industrial settings to flatten the top of the fins leading to a maximum contact between the brazing alloy and the fins. Consequently brazed joints quantity is minimized inducing a diminution of the presence of eutectic phase, which is structurally brittle and limits the mechanical strength of the construction. A metallurgical study brings other elements leading to the prevention of premature rupture of the brazed structure. The idea is to determine an optimized solidification path and to identify a temperature range and holding time where the brazed joint is almost free of eutectic phase during the assembly process in the vacuum furnace.


2004 ◽  
Vol 126 (4) ◽  
pp. 680-691 ◽  
Author(s):  
B. Prabhakara Rao ◽  
Sarit K. Das

A detailed experimental study on flow maldistribution from port to channel of a plate heat exchanger is presented. In general, flow maldistribution brings about an increase in pressure drop across the heat exchanger. This increase is found to depend on flow rate, number of channels and port size. Experiments show that analytical predictions of pressure drop including maldistribution effect are quite accurate for practical purposes. The results indicate that under identical conditions, maldistribution is more severe in Z-type plate heat exchanger compared to U type. Experiments are also carried out under non-isothermal realistic operating conditions, which show increased flow maldistribution at elevated temperature. Finally predictions are made for industrial plate heat exchangers, which show the limitation of adding additional plates beyond a certain limit. An insight to the physical aspects of maldistribution and its possible reduction through proper design strategy is also indicated.


2011 ◽  
Vol 410 ◽  
pp. 191-195
Author(s):  
C.H. Shu ◽  
H.W. Hsu ◽  
T.Y. Yeh ◽  
W.S. Chen ◽  
R.K. Shiue

The manufacturing of plate heat exchangers is much more difficult than that of making traditional heat exchangers. The demand of increased corrosion resistance, avoiding Cu ion contamination, resisting to high-temperature resulting from various applied environments makes the traditional Cu brazed 316 stainless steel (316SS) plate heat exchanger fail to satisfy certain applications. Corrosion-resistant brazed 316SS plate heat exchangers are successfully developed using two commercially available Ni-based brazing foils, and they are valuable for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document