Kinetics of Organic Carbon Consumption by Yeast Strain UY7

2011 ◽  
Vol 47 (1) ◽  
pp. 1-7
Author(s):  
WATARU TAKATSUJI ◽  
YOSHINOBU YAMAGIWA ◽  
KENJI FURUKAWA
2013 ◽  
Vol 10 (5) ◽  
pp. 2931-2943 ◽  
Author(s):  
C.-C. Chen ◽  
G.-C. Gong ◽  
F.-K. Shiah ◽  
W.-C. Chou ◽  
C.-C. Hung

Abstract. A tremendous amount of organic carbon respired by plankton communities has been found in summer in the East China Sea (ECS), and this rate has been significantly correlated with fluvial discharge from the Changjiang River. However, respiration data has rarely been collected in other seasons. To evaluate and reveal the potential controlling mechanism of organic carbon consumption in spring in the ECS, two cruises covering almost the entire ECS shelf were conducted in the spring of 2009 and 2010. These results showed that although the fluvial discharge rates were comparable to the high riverine flow in summer, the plankton community respiration (CR) varied widely between the two springs. In 2009, the level of CR was double that of 2010, with mean (± SD) values of 111.7 (±76.3) and 50.7 (±62.9) mg C m−3 d−1, respectively. The CR was positively correlated with concentrations of particulate organic carbon and/or chlorophyll a (Chl a) in 2009 (all p < 0.01). These results suggest that the high CR rate in 2009 can be attributed to high planktonic biomasses. During this period, phytoplankton growth flourished due to allochthonous nutrients discharged from the Changjiang River. Furthermore, higher phytoplankton growth led to the absorption of an enormous amount of fugacity of CO2 (fCO2) in the surface waters, even with a significant amount of inorganic carbon regenerated via CR. In 2010, even more riverine runoff nutrients were measured in the ECS than in 2009. Surprisingly, the growth of phytoplankton in 2010 was not stimulated by enriched nutrients, and its growth was likely limited by low water temperature and/or low light intensity. Low temperature might also suppress planktonic metabolism, which could explain why the CR was lower in 2010. During this period, lower surface water fCO2 may have been driven mainly by physical process(es). To conclude, these results indicate that high organic carbon consumption (i.e. CR) in the spring of 2009 could be attributed to high planktonic biomasses, and the lower CR rate during the cold spring of 2010 might be likely limited by low temperature in the ECS. This further suggests that the high inter-annual variability of organic carbon consumption needs to be kept in mind when budgeting the annual carbon balance.


2013 ◽  
Vol 49 (3) ◽  
pp. 93-101
Author(s):  
XIAOWEI TIAN ◽  
MOTOO UTSUMI ◽  
KAZUYA SHIMIZU ◽  
ZHENYA ZHANG ◽  
NORIO SUGIURA

Bragantia ◽  
2016 ◽  
Vol 75 (4) ◽  
pp. 487-496 ◽  
Author(s):  
Fabiano André Petter ◽  
Tamara Santos Ferreira ◽  
Adilson Paulo Sinhorin ◽  
Larissa Borges de Lima ◽  
Leidimar Alves de Morais ◽  
...  

ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf) and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.


2019 ◽  
Vol 17 (2) ◽  
pp. 254-265 ◽  
Author(s):  
A. Derbalah ◽  
M. Sunday ◽  
R. Chidya ◽  
W. Jadoon ◽  
H. Sakugawa

Abstract In this study, the kinetics of photocatalytic removal of imidacloprid, a systemic chloronicotinoid insecticide, from water using two advanced oxidation systems (ZnO(normal)/H2O2/artificial sunlight and ZnO(nano)/H2O2/artificial sunlight) were investigated. Moreover, the effects of pH, insecticide concentration, catalyst concentration, catalyst particle size, and water type on the photocatalytic removal of imidacloprid were evaluated. Furthermore, total mineralization of imidacloprid under these advanced oxidation systems was evaluated by monitoring the decreases in dissolved organic carbon (DOC) concentrations and formation rate of inorganic ions (Cl− and NO2−) with irradiation time using total organic carbon (TOC) analysis and ion chromatography to confirm the complete detoxification of imidacloprid in water. The degradation rate of imidacloprid was faster under the ZnO(nano)/H2O2/artificial sunlight system than the ZnO(normal)/artificial sunlight system in both pure and river water. The photocatalytic degradation of imidacloprid under both advanced oxidation systems was affected by pH, catalyst concentration, imidacloprid concentration, and water type. Almost complete mineralization of imidacloprid was only achieved in the ZnO(nano)/H2O2/artificial sunlight oxidation system. The photogeneration rate of hydroxyl radicals was higher under the ZnO(nano)/H2O2/artificial sunlight system than the ZnO(normal)/H2O2/artificial sunlight system. Advanced oxidation processes, particularly those using nanosized zinc oxide, can be regarded as an effective photocatalytic method for imidacloprid removal from water.


Sign in / Sign up

Export Citation Format

Share Document