scholarly journals Enrichment and Community Analysis of Acid-resistant Nitrifying Bacteria form Activated Sludge

2021 ◽  
Vol 57 (2) ◽  
pp. 35-41
Author(s):  
KATSUHIRO ENOBI ◽  
QUANGHUY PHAM ◽  
TATSUO SUMINO
1997 ◽  
Vol 36 (10) ◽  
pp. 53-63 ◽  
Author(s):  
Shabbir H. Gheewala ◽  
Ajit P. Annachhatre

Discharge of aniline to the environment must be controlled as aniline is toxic to aquatic life and also exerts additional oxygen demand due to nitrification reaction involved during its biodegradation. Organic carbonaceous removal by heterotrophs during aniline biodegradation releases NH4+ which is the substrate for autotrophic nitrifying bacteria. However, aniline is toxic to nitrifying bacteria and severely inhibits their activity. Accordingly, batch and continuous studies were conducted to assess the biodegradation of aniline and its inhibitory effect on nitrification. Synthetic wastewater was used as feed with aniline as sole carbon source for mixed microbial population. Experiments were conducted at ambient temperatures of 30–32°C. An aerobic activated sludge Unit was operated at an HRT of about 13 hours and SRT of about 12 days. Biomass from aerobic activated sludge process treating domestic wastewater was acclimatized to synthetic wastewater Containing aniline. Removal efficiencies more than 95% were obtained for feed aniline concentrations upto 350 mg/l with insignificant inhibition of nitrification due to aniline. Ammonia oxidation rates of about 20–115 mgNH4N/l/d were observed. Batch tests were carried out to test the inhibitory effects of high initial aniline concentrations on nitritication. Carbonaceous removal by heterotrophs proceeded rapidly within 4–6 hours with nitrification picking up as soon as aniline concentration dropped below 3–4 mg/l. For higher initial aniline concentration more than 250 mg/l, complete nitrification did not take place even after aniline Concentration dropped below 3–4 mg/l.


2013 ◽  
Vol 85 (1) ◽  
pp. 104-115 ◽  
Author(s):  
Marc Mußmann ◽  
Miquel Ribot ◽  
Daniel von Schiller ◽  
Stephanie N. Merbt ◽  
Clemens Augspurger ◽  
...  

2008 ◽  
Vol 42 (10-11) ◽  
pp. 2814-2826 ◽  
Author(s):  
Poul Larsen ◽  
Jeppe L. Nielsen ◽  
Tore C. Svendsen ◽  
Per H. Nielsen

2008 ◽  
Vol 58 (11) ◽  
pp. 2195-2201 ◽  
Author(s):  
D. Ki ◽  
J. Park ◽  
J. Lee ◽  
K. Yoo

In this study, we performed microbial community analysis to examine microbial diversity and community structure in microbial fuel cells (MFCs) seeded with activated sludge from a municipal wastewater treatment plant in South Korea. Because anode-attached biofilm populations are particularly important in electricity transfer, the ecological characteristics of anode-attached biofilm microbes were explored and compared with those of microbes grown in suspension in an anode chamber. 16S rDNA-based community analysis showed that the degree of diversity in anode-attached biofilms was greater than that of the originally seeded activated sludge as well as that of the suspension-grown microbes in the anode bottle. In addition, Bacteroidetes and Clostridia grew preferentially during MFC electricity generation. Further phylogenetic analysis revealed that the anode biofilm populations described in this work are phylogenetically distant from previously characterized MFC anode biofilm microbes. These findings suggest that a phylogenetically diverse set of microbes can be involved in the electricity generation of MFC anode compartments, and that increased microbial diversity in anode biofilms may help to stabilize electricity production in the MFC.


Sign in / Sign up

Export Citation Format

Share Document