In-situ Residual Oil Saturation And Cluster Size Distribution In Sandstones After Surfactant Flooding Imaged With X-ray Micro-computed Tomography

Author(s):  
Stefan Iglauer ◽  
Mohammad Sarmadivaleh ◽  
Chong Geng ◽  
Maxim Lebedev
2021 ◽  
Author(s):  
Hang Su ◽  
Fujian Zhou ◽  
Lida Wang ◽  
Chuan Wang ◽  
Lixia Kang ◽  
...  

Abstract For reservoirs containing oil with a high total acid number, alkali-cosolvent-polymer (ACP) flood can potentially increase the oil recovery by its saponification effects. The enhanced oil recovery performance of ACP flood has been studied at core and reservoir scale in detail, however, the effect of ACP flood on residual oil saturation in the swept area still lacks enough research. Medical computed tomography (Medical-CT) scan and micro computed tomography (Micro-CT) scan are used in combination to visualize micro-scale flow and reveal the mechanisms of residual oil reduction during ACP flood. The heterogeneous cores containing two layers of different permeability are used for coreflood experiment to clarify the enhanced oil recovery (EOR) performance of ACP food in heterogeneous reservoirs. The oil saturation is monitored by Medical-CT. Then, two core samples are drilled in each core after flooding and the decrease of residual oil saturation caused by ACP flood is further quantified by Micro-CT imageing. Results show that ACP flood is 14.5% oil recovery higher than alkaline-cosolvent (AC) flood (68.9%) in high permeability layers, 17.9% higher than AC flood (26.3%) in low permeability layers. Compared with AC flood, ACP flood shows a more uniform displacement front, which implies that the injected polymer effectively weakened the viscosity fingering. Moreover, a method that can calculate the ratio of oil-water distribution in each pore is developed to establish the relationship between the residual oil saturation of each pore and its pore size, and reached the conclusion that they follow the power law correlation.


2015 ◽  
Author(s):  
Brian M. Patterson ◽  
Nikolaus Lynn Cordes ◽  
Bryce C. Tappan ◽  
Darla Graff Thompson ◽  
Virginia Warren Manner

2007 ◽  
Author(s):  
Nils M. Jakobsson ◽  
Mohamad Othman ◽  
Hussen Mansur

SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 943-951 ◽  
Author(s):  
A.. Saraf ◽  
A.H. de Zwart ◽  
Peter K. Currie ◽  
Mohammad A.J. Ali

Summary Recently, it has been shown that the presence of residual oil in a formation can have a considerable influence on the trapping mechanisms for particles present in reinjected produced water (Ali 2007; Ali et al. 2005, 2007, 2009). This article reports on a further set of extensive coreflow experiments that confirm and extend these results. The tests were conducted in a computerized-tomography (CT) scanner, allowing direct observation of the buildup of particle deposition along the core. These experiments are relevant to operational issues associated with produced-water reinjection (PWRI). In many cases, produced water is injected into formations containing oil, so reduced oil saturation is achieved rapidly in the area around the well. Even if the well is outside the oil zone, trapped oil droplets are always present in produced water, and a residual-oil zone will gradually build up around the well. Major differences are found between the deposition profiles for fully water-saturated cores and the cores having residual-oil saturation. In particular, particles penetrate deeper into the core with residual-oil saturation, and considerably more particles pass completely through the core without being trapped. The X-ray technique allows direct observation during the experiment of the deposition process inside the core, eliminating the complicating effect of any external filter cake. As a result, an analysis can be performed of the deposition parameters relevant inside the core using deep-bed-filtration theory, and the results of this analysis are presented. In particular, it is shown that the values of the filtration function determined from the CT-scan (X-ray) data are consistent with those obtained from analysis of the effluent concentration. Moreover, both methods of analysis find quite clearly that the filtration coefficient increases with decreasing flow rate. The results indicate that formation damage near a wellbore during water injection will be reduced by the presence of residual oil, and that particles will penetrate deeper into the formation. The result is also relevant to injection under fracturing conditions because particle deposition in the wall of the fracture (where residual oil may be present) is one of the mechanisms governing fracture growth.


2021 ◽  
Vol 6 (1) ◽  
pp. 40-46
Author(s):  
A. G. Skripkin ◽  
I. N. Koltsov ◽  
S. V. Milchakov

The paper presents the results of laboratory studies of polymer-surfactant flooding on core samples of different permeability. The obtained data are used in hydrodynamic modeling. Experimental studies included: • study of the dynamics of oil displacement, plotting the dependence of the residual oil saturation on the surfactant concentration – interfacial tension at the interface of the surfactant-oil solution; • comparative experimental studies of residual oil saturation when oil is displaced by surfactant compositions of various manufacturers; • comparative studies of phase permeability in flood experiments for the filtration of oil and water, oil and polymer-surfactant solution at different ratios in the flow.


2021 ◽  
Author(s):  
Runyu Zhang ◽  
Huiluo Chen ◽  
Huiyang Luo ◽  
Sadeq Malakooti ◽  
Simon Oman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document