scholarly journals Many Intraoperative Monitoring Modalities Have Been Developed To Limit Injury During Extreme Lateral Interbody Fusion (XLIF/MIS XLIF): Does That Mean XLIF/MIS XLIF Are Unsafe?

2019 ◽  
Vol 10 ◽  
pp. 233
Author(s):  
Nancy E. Epstein

Background: Extreme lateral interbody fusions (XLIF) and Minimally Invasive (MIS) XLIF pose significant risks of neural injury to the; lumbar plexus, ilioinguinal, iliohypogastric, genitofemoral, lateral femoral cutaneous, and subcostal nerves. To limit these injuries, many intraoperative neural monitoring (IONM) modalities have been proposed. Methods: Multiple studies document various frequencies of neural injuries occurring during MIS XLIF/XLIF: plexus injuries (13.28%); sensory deficits (0-75%; permanent 62.5%); motor deficits (0.7-33.6%; most typically iliopsoas weakness (14.3%-31%)), and anterior thigh/groin pain (12.5-25%.-34%). To avoid/limit these injuries, multiple IONM techniques have been proposed. These include; using finger electrodes during operative dissection, employing motor evoked potentials (MEP), eliminating (no) muscle relaxants (NMR), and using “triggered” EMGs. Results: In one study, finger electrodes for XLIF at L4-L5 level for degenerative spondylolisthesis reduced transient postoperative neurological symptoms from 7 [38%] of 18 cases (e.g. without IONM) to 5 [14%] of 36 cases (with IONM). Two series showed that motor evoked potential monitoring (MEP) for XLIF reduced postoperative motor deficits; they, therefore, recommended their routine use for XLIF. Another study demonstrated that eliminating muscle relaxants during XLIF markedly reduced postoperative neurological deficits/thigh pain by allowing for better continuous EMG monitoring (e.g. NMR no muscle relaxants). Finally, a “triggered” EMG study” reduced postoperative motor neuropraxia, largely by limiting retraction time. Conclusion: Multiple studies have offered different IONM techniques to avert neurological injuries following MIS XLIF/XLIF. Does this mean that these procedures (e.g. XLIF/MIS XLIF) are unsafe?

Author(s):  
Johannes Herta ◽  
Erdem Yildiz ◽  
Daniela Marhofer ◽  
Thomas Czech ◽  
Andrea Reinprecht ◽  
...  

Abstract Purpose Feasibility, reliability, and safety assessment of transcranial motor evoked potentials (MEPs) in infants less than 12 months of age. Methods A total of 22 patients with a mean age of 33 (range 13–49) weeks that underwent neurosurgery for tethered cord were investigated. Data from intraoperative MEPs, anesthesia protocols, and clinical records were reviewed. Anesthesia during surgery was maintained by total intravenous anesthesia (TIVA). Results MEPs were present in all patients for the upper extremities and in 21 out of 22 infants for the lower extremities. Mean baseline stimulation intensity was 101 ± 20 mA. If MEPs were present at the end of surgery, no new motor deficit occurred. In the only case of MEP loss, preoperative paresis was present, and high baseline intensity thresholds were needed. MEP monitoring did not lead to any complications. TIVA was maintained with an average propofol infusion rate of 123.5 ± 38.2 µg/kg/min and 0.46 ± 0.17 µg/kg/min for remifentanil. Conclusion In spinal cord release surgery, the use of intraoperative MEP monitoring is indicated regardless of the patient’s age. We could demonstrate the feasibility and safety of MEP monitoring in infants if an adequate anesthetic regimen is applied. More data is needed to verify whether an irreversible loss of robust MEPs leads to motor deficits in this young age group.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Davide Giampiccolo ◽  
Cristiano Parisi ◽  
Pietro Meneghelli ◽  
Vincenzo Tramontano ◽  
Federica Basaldella ◽  
...  

Abstract Muscle motor-evoked potentials are commonly monitored during brain tumour surgery in motor areas, as these are assumed to reflect the integrity of descending motor pathways, including the corticospinal tract. However, while the loss of muscle motor-evoked potentials at the end of surgery is associated with long-term motor deficits (muscle motor-evoked potential-related deficits), there is increasing evidence that motor deficit can occur despite no change in muscle motor-evoked potentials (muscle motor-evoked potential-unrelated deficits), particularly after surgery of non-primary regions involved in motor control. In this study, we aimed to investigate the incidence of muscle motor-evoked potential-unrelated deficits and to identify the associated brain regions. We retrospectively reviewed 125 consecutive patients who underwent surgery for peri-Rolandic lesions using intra-operative neurophysiological monitoring. Intraoperative changes in muscle motor-evoked potentials were correlated with motor outcome, assessed by the Medical Research Council scale. We performed voxel–lesion–symptom mapping to identify which resected regions were associated with short- and long-term muscle motor-evoked potential-associated motor deficits. Muscle motor-evoked potentials reductions significantly predicted long-term motor deficits. However, in more than half of the patients who experienced long-term deficits (12/22 patients), no muscle motor-evoked potential reduction was reported during surgery. Lesion analysis showed that muscle motor-evoked potential-related long-term motor deficits were associated with direct or ischaemic damage to the corticospinal tract, whereas muscle motor-evoked potential-unrelated deficits occurred when supplementary motor areas were resected in conjunction with dorsal premotor regions and the anterior cingulate. Our results indicate that long-term motor deficits unrelated to the corticospinal tract can occur more often than currently reported. As these deficits cannot be predicted by muscle motor-evoked potentials, a combination of awake and/or novel asleep techniques other than muscle motor-evoked potentials monitoring should be implemented.


2020 ◽  
Vol 57 (6) ◽  
pp. 1076-1082 ◽  
Author(s):  
Norihiko Shiiya ◽  
Kazumasa Tsuda ◽  
Ken Yamanaka ◽  
Daisuke Takahashi ◽  
Naoki Washiyama ◽  
...  

Abstract OBJECTIVES Canine experiments have shown that transoesophageal motor-evoked potential monitoring is feasible, safe and stable, with a quicker response to ischaemia and a better prognostic value than transcranial motor-evoked potentials. We aimed to elucidate whether or not these findings were clinically reproducible. METHODS A bipolar oesophageal electrode mounted on a large-diameter silicon tube and a train of 5 biphasic wave stimuli were used for transoesophageal stimulation. Results of 18 patients (median age 74.5 years, 13 males) were analysed. RESULTS There were no mortalities, spinal cord injuries or complications related with transoesophageal stimulation. Transcranial motor-evoked potential could not be monitored up to the end of surgery in 3 patients for unknown reasons, 2 of whom from the beginning. Transoesophageal motor-evoked potential became non-evocable after manipulation of a transoesophageal echo probe in 2 patients. Strenuous movement of the upper limbs during transoesophageal stimulation was observed in 3 patients. In 14 patients who successfully completed both monitoring methods up to the end of surgery (11 thoraco-abdominal and 3 descending aortic repair), the final results were judged as false positives in 6 by transcranial stimulation and in 1 by transoesophageal stimulation. The stimulation intensity was significantly lower and the upper limb amplitude was significantly higher by transoesophageal stimulation, while the lower limb amplitude was comparable. CONCLUSIONS Transoesophageal motor-evoked potential monitoring is clinically feasible and safe with a low false positive rate. A better electrode design is required to avoid its migration by transoesophageal echo manipulation. Further studies may be warranted. Clinical registration number UMIN000022320.


2021 ◽  
Author(s):  
Zonggang Hou ◽  
Zhenxing Huang ◽  
Zhenye Li ◽  
Gen Li ◽  
Yaokai Xu ◽  
...  

Abstract Insular gliomas remain surgically challenge due to their complex anatomical position and microvascular supply. The incidence of ischemic complications is a risk that should not be ignored. The goal of this study was to analyze the incidence of ischemia and its risk factors, and also describe a single surgeon's arteries protection experience of insular gliomas resection. The authors studied 75 consecutive cases of insular gliomas that underwent transcortical tumor resection in their division. Analysis included pre- and postoperative demographic, clinical, radiological including diffusion weighted imaging (DWI), as well as intraoperative neurophysiology data, and functional outcomes. Strategies such as “Residual Triangle”, “Basal Ganglia Reconstruction” and “Sculpting Technique” were used to protect lateral lenticulostriate arteries and main branches of M2 for maximal tumor resection according to the different classification of Berger-Sinai. Postoperative diffusion-weighted imaging showed acute ischemia in 44 patients, only 9 of whom developed new motor deficits. Flat inner edge (OR 0.144 95% CI 0.024, 0.876), and motor evoked potentials (MEPs) (<50%) (OR 18.182, 95% CI 3.311, 100.00) were determined to have significant associations with postoperative Critical Ischemia, which located in the posterior limb of the internal capsule or corona radiata. For insular gliomas resection, the protection of main branches of MCA is important. Insular gliomas resection might be with high incidence of ischemia uncovered by DWI which not always result in neurological deficits. Their own strategies maybe the feasible technical nuances allow the surgeon to achieve a thorough and safe resection. Motor evoked potentials is essential for its resection.


2020 ◽  
Vol 132 (4) ◽  
pp. 987-997 ◽  
Author(s):  
Taiichi Saito ◽  
Yoshihiro Muragaki ◽  
Manabu Tamura ◽  
Takashi Maruyama ◽  
Masayuki Nitta ◽  
...  

OBJECTIVEResection of gliomas in the precentral gyrus carries a risk of severe motor dysfunction. To prevent permanent, severe postoperative motor dysfunction, reliable intraoperative predictors of postoperative function are required. Since 2005, the authors have removed gliomas in the precentral gyrus with combined functional mapping and estimation of intraoperative voluntary movement (IVM) during awake craniotomy and transcortical motor evoked potentials (MEPs). The purpose of the current study was to evaluate whether intraoperative findings of combined monitoring of IVM during awake craniotomy and transcortical MEP monitoring were useful for predicting postoperative motor function of patients with gliomas in the precentral gyrus.METHODSThe current study included 30 patients who underwent resection of precentral gyrus gliomas during awake craniotomy from April 2000 to January 2018. All tumors were removed with monitoring of IVM during awake craniotomy and transcortical MEPs. Postoperative motor function was classified as stable or declined, with the extent of decline categorized as mild, moderate, or severe. We defined moderate and severe deficits were those that hindered daily life.RESULTSIn 28 of 30 cases, available waveforms were obtained with transcortical MEPs. The mean extent of resection (EOR) was 93%. Relative to preoperative status, motor function 6 months after surgery was considered stable in 20 patients and was considered to show mild decline in 7, moderate decline in 2, and severe decline in 1. Motor function 6 months after surgery was significantly correlated with IVM (p = 0.0096), changes in transcortical MEPs (decline ≤ or > 50%) (p = 0.0163), EOR, and ischemic lesions on postoperative MRI. Six patients with no change in IVM showed stable motor function 6 months after surgery. Only 2 patients with a decline in IVM and a decline in MEPs ≤ 50% had a decline in motor function 6 months after surgery (18%; 2/11 patients), whereas 11 patients with a decline in IVM and a decline in MEPs > 50% had such a decline in motor function (73%; 8/11 patients) including 2 patients with moderate and 1 with severe deficits. Three patients with moderate or severe motor deficits showed the lowest MEP values (< 100 µV).CONCLUSIONSCombined judgment from monitoring of IVM during awake craniotomy and transcortical MEPs is useful for predicting postoperative motor function during removal of gliomas in the precentral gyrus. Maximum resection was achieved with an acceptable morbidity rate. Thus, these tumors should not be considered unresectable.


2019 ◽  
Vol 23 (6) ◽  
pp. 758-766 ◽  
Author(s):  
You Gyoung Yi ◽  
Keewon Kim ◽  
Hyung-Ik Shin ◽  
Moon Suk Bang ◽  
Hee-Soo Kim ◽  
...  

OBJECTIVEThis study aimed to investigate the feasibility and safety of intraoperative motor evoked potential (MEP) monitoring in infants less than 3 months of age.METHODSThe authors investigated 25 cases in which infants younger than 3 months (mean age 72.8 days, range 39–87) underwent neurosurgery between 2014 and 2017. Myogenic MEPs were obtained through transcranial electrical stimulation. In all cases, surgery was performed under total intravenous anesthesia, maintained with remifentanil and propofol.RESULTSMEPs were documented in 24 infants, the sole exception being 1 infant who was lethargic and had 4-limb weakness before surgery. The mean stimulation intensity maintained during monitoring was 596 ± 154 V (range 290–900 V). In 19 of 24 infants MEP signals remained at ≥ 50% of the baseline amplitude throughout the operation. Among 5 cases with a decrease in intraoperative MEP amplitude, the MEP signal was recovered in one during surgery, and in the other case a neurological examination could not be performed after surgery. In the other 3 cases, 2 infants had relevant postoperative weakness and the other did not show postoperative neurological deficits. Postoperative weakness was not observed in any of the 20 infants who had no deterioration (n = 19) or only temporary deterioration (n = 1) in MEP signal during surgery.CONCLUSIONSTranscranial electrical MEPs could be implemented during neurosurgery in infants between 1 and 3 months of age. Intraoperative MEP monitoring may be a safe adjunct for neurosurgical procedures in these very young patients.


2015 ◽  
Vol 21 (3) ◽  
pp. 397-400 ◽  
Author(s):  
David Purger ◽  
Abdullah H Feroze ◽  
Omar Choudhri ◽  
Leslie Lee ◽  
Jaime Lopez ◽  
...  

Neuromonitoring can be used to map out particular neuroanatomical tracts, define physiologic deficits secondary to specific pathology or intervention, or predict postoperative outcome and proves essential in the detection of central and peripheral ischemic events during neurosurgical intervention. Herein, we describe an instance of elective balloon-assisted coiling of a recurrent basilar tip aneurysm in a 61-year-old woman, where intraoperative somatosensory evoked potentials (SSEPs) and transcranial motor evoked potentials (TcMEPs) were lost in the right lower extremity intraoperatively. We aim to highlight that targeted use of monitoring proves advantageous in both the open surgical and endovascular setting, even in the avoidance of potential iatrogenic peripheral nerve damage and limb ischemia as documented herein. Consideration of the increased risk for peripheral ischemia in the neurointerventional setting is especially imperative in particular populations where blood vessels might be of diminished size, such as in infants, young children, and severely deconditioned adults.


2013 ◽  
Vol 35 (1) ◽  
pp. E7 ◽  
Author(s):  
Aaron J. Clark ◽  
John E. Ziewacz ◽  
Michael Safaee ◽  
Darryl Lau ◽  
Russ Lyon ◽  
...  

Object The use of intraoperative neurophysiological monitoring (IONM) in surgical decompression surgery for myelopathy may assist the surgeon in taking corrective measures to reduce or prevent permanent neurological deficits. We evaluated the efficacy of IONM in cervical and cervicothoracic spondylotic myelopathy (CSM) cases. Methods The authors retrospectively reviewed 140 cases involving patients who underwent surgery for CSM utilizing IONM during 2011 at the University of California, San Francisco. Data on preoperative clinical variables, intraoperative changes in transcranial motor evoked potentials (MEPs), and postoperative new neurological deficits were collected. Associations between categorical variables were analyzed with the Fisher exact test. Results Of the 140 patients, 16 (11%) had significant intraoperative decreases in MEPs. In 8 of these cases, the MEP signal did not return to baseline values by the end of the operation. There were 8 (6%) postoperative deficits, of which 6 were C-5 palsies and 2 were paraparesis. Six of the patients with postoperative deficits had demonstrated persistent MEP signal change on IONM. There was a significant association between persistent MEP changes and postoperative deficits (p < 0.001). The sensitivity of intraoperative MEP monitoring was 75%, the specificity 98%, the positive predictive value 75%, and the negative predictive value 98%. Due to higher rates of false negatives, the sensitivity decreased to 60% in the subgroup of patients with vascular disease comorbidity. The sensitivity increased to 100% in elderly patients and in patients with preoperative motor deficits. The sensitivity and positive predictive value of deltoid and biceps MEP changes in predicting C-5 palsy were 67% and 67%, respectively. Conclusions The authors found a correlation between decreased intraoperative MEPs and postoperative new neurological deficits in patients with CSM. Sensitivity varies based on patient comorbidities, age, and preoperative neurological function. Monitoring of MEPs is a useful adjunct for CSM cases, and the authors have developed a checklist to standardize their responses to intraoperative MEP changes.


Sign in / Sign up

Export Citation Format

Share Document