scholarly journals DISSOLVING PULP FROM KENAF BY BIO-BLEACHING PROCESS

2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Susi Sugesty ◽  
Yusup Setiawan

The kenaf taken from Malang-East Java was four to five months old and used as the raw material of dissolving pulp. Morphology and chemicals content of kenaf was analyzed based on Indonesian National Standard (SNI). Kenaf fibre has the fibre length average of 2.59 mm for stem and 3.63 mm for bast and it is classified on the long fiber, fibre length > 1.60 mm. It contains alpha cellulose in the amount of 45.45% for bast and 39.46% for stem. Kenaf was cut with the length of 3 to 5 cm to make chips. Before cooking, pre-hydrolyzed using water and dilute acid (0.4% H2SO4) was done to remove pentosan (hemicellulose) by soaking chips in water and 0.4% H2SO4 in the ratio of 1 : 5 at temperature of 135oC for 2 hours. The results was mixed with cooking liquor which contains Active Alkali (AA) of 16% and Sulfidity (S) of 28%. Ratio of raw material and cooking liquor was 1 : 5 at temperature of 160oC for 3 hours. Bleaching process was done in the five stages consisted of X0D0E0D1D2 (Xylanase, Oxygen delignification, Chlorine Dioxide, Oxygen Ectraction, Chlorine Dioxide 1st, Chlorine Dioxide 2nd). Bleaching process in the stage of X use xylanase enzyme (bio-bleaching). Every stage was washed with hot soft water up to neutral pH. Dissolving pulp was analyzed for brightness, alpha cellulose content and other chemicals content. Pulp viscosity is very high, which means that the pulp bleaching process is not much cause degraded cellulose Keywords: bio-bleaching, dissolving pulp, pre-hydrolyzed, kenaf, xylanase  ABSTRAKKenaf berasal dari daerah Jawa Timur Malang - berusia empat sampai lima bulan dan digunakan sebagai bahan baku dissolving pulp. Morfologi dan komponen kimia kenaf dianalisis berdasarkan Standar Nasional Indonesia (SNI). Serat kenaf memiliki panjang serat rata-rata 2,59 mm untuk batang dan 3,63 mm untuk kulit pohon, termasuk kedalam kelompok serat panjang dengan panjang serat > 1,60 mm. Kenaf mengandung alpha selulosa sebesar 45,45% untuk kulit dan 39,46% untuk batang. Kenaf dipotong-potong dengan panjang 3 sampai dengan 5 cm. Sebelum pemasakan, dilakukan prahidrolisa menggunakan air dan asam encer (0,4% H2SO4) untuk melunakkan serpih kenaf dan membuat ikatan pentosan (hemiselulosa) menjadi lemah, dengan merendamnya dalam air dan 0,4% H2SO4 dengan rasio 1 : 5 pada suhu 135oC selama 2 jam. Selanjutnya dilakukan pemasakan dengan proses kraft menggunakan Alkali Aktif (AA) sebesar 16% dan sulfiditas (S) sebesar 28%. Rasio bahan baku dan larutan pemasak adalah 1 : 5 pada suhu 160oC selama 3 jam. Proses pemutihan pulp dilakukan dalam lima tahap terdiri dari X0D0E0D1D2 (Xilanase, Oksigen delignifikasi, Klorin dioksida, Oksigen Ekstraksi, Klorin dioksida 1, Klorin dioksida 2). Proses pemutihan pada tahap X menggunakan enzim xilanase yang dikenal dengan bio–bleaching. Setiap tahap dicuci dengan air panas sampai bersih. Dissolving pulp yang diperoleh dianalisis derajat cerah, kadar selulosa alfa dan komponen kimia lainnya sesuai SNI. Dissolving pulp mempunyai viskositas yang sangat tinggi, ini berarti bahwa proses pemutihan pulp tidak banyak menyebabkan terjadinya degradasi selulosa.Kata kunci: bio-bleaching, dissolving pulp, prehidrolisa, kenaf, xilanase

2015 ◽  
Vol 5 (02) ◽  
Author(s):  
Susi Sugesty ◽  
Teddy Kardiansyah ◽  
Wieke Pratiwi

The use of xylanase in pulp bleaching process is intended to reduce chemicals consumption in pulp industry that still using chlorine compounds (chlorine dioxide), so the bleaching stage needs to be modified without reducing the quality of dissolving pulp. Dissolving pulp was produced from six-year-old Acacia crassicarpa as raw material by the Prehydrolysis-Kraft process, then the pulp was bleached with the ECF (elemental chlorine free) process using xylanase (X) and oxygen (O) as comparison at the early stage of bleaching. The sequences of process include X/ODEDED (xylanase or oxygen; chlorine dioxide; extraction-1; chlorine dioxide-1; extraction-2; chlorine dioxide -2). Results showed that the dissolving pulp with active alkali of 22%, sulphidity of 30%, the temperature of 165oC, and the ratio of 1:4 is the optimal condition. Cellulose content, viscosity and brightness were above 94%, 6.2 cP and 88% ISO, respectively.The dissolving pulp produced with the application of xylanase has better quality than the oxygen one, and meets the requirement according to Indonesia National Standard (SNI 0938:2010, pulp rayon).Keywords: Acacia crassicarpa, xylanase, Prehydrolysis-Kraft, dissolving pulp, rayon pulpABSTRAKPenggunaan xilanase pada proses pemutihan pulp dimaksudkan untuk mengurangi konsumsi bahan kimia yang digunakan selama ini di industri pulp, yang masih menggunakan senyawa klorin (klorin dioksida), untuk itu perlu dilakukan modifikasi pada tahap pemutihannya tanpa mengurangi kualitas dissolving pulp yang dihasilkan. Pembuatan dissolving pulp dilakukan menggunakan bahan baku kayu Acacia crassicarpa berumur 6 tahun dengan proses Prahidrolisa–Kraft, selanjutnya pulp diputihkan dengan proses ECF (Elemental Chlorine Free) menggunakan xilanase (X) dan oksigen (O) sebagai pembanding pada awal pemutihan dengan 6 tahapan proses, yaitu X/ODEDED (xilanase atau oksigen; klorin dioksida; ekstraksi-1; klorin dioksida-1; ekstraksi-2; klorin dioksida-2) dengan perlakuan oksigen sebagai pembanding. Hasil pembuatan dissolving pulp dengan alkali aktif 22%, sulfiditas 30%, suhu 165oC, rasio 1:4 adalah kondisi yang optimal. Kandungan selulosa, viskositas dan derajat cerah yang diperoleh masing-masing yaitu di atas 94%, 6,2 cP dan 88% ISO. Kualitas dissolving pulp hasil pemutihan dengan penambahan xilanase lebih tinggi daripada menggunakan oksigen dan memenuhi persyaratan spesifikasi SNI 0938:2010, pulp rayon. Kata kunci : Acacia crassicarpa, xilanase, Prahidrolisa-Kraft, dissolving pulp, pulp rayon


TAPPI Journal ◽  
2013 ◽  
Vol 12 (9) ◽  
pp. 19-24
Author(s):  
WEN LIU ◽  
SHUKE ZHOU ◽  
XIAOHUA QI ◽  
JUNWEN PU

In this investigation, alkaline pretreatment before kraft pulping and combined post-treatments with xylanase and alkali after bleaching were applied to obtain an acetate-grade dissolving pulp. Bleaching sequences using oxygen or hydrogen peroxide were also studied. The brightness, α-cellulose content, and degree of polymerization (DP) of the bleached pulps from different bleaching sequences were evaluated. Alkaline pretreatment resulted in a higher α-cellulose content in the pulp. When a D1ED2P bleaching sequence was applied, the pulp obtained had an ISO brightness of 87.5%, a DP of 1050, and an α-cellulose content of 92.7%. The requirements for an acetate-grade dissolving pulp can then be met when followed by combined post-treatments with xylanase and alkali under the optimal conditions of 120 IU•g–1 xylanase dosage and 4% sodium hydroxide concentration.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (8) ◽  
pp. 9-16 ◽  
Author(s):  
JEROME E. ANDREW ◽  
JONAS JOHAKIMU ◽  
NKANYISO E. NGEMA

Ozone use in conjunction with chlorine dioxide during pulp bleaching offers several advantages over conventional bleaching sequences that make use of chlorine dioxide only. Despite this, in South Africa, only one mill uses ozone. The current study was a preliminary investigation into the use of ozone in bleaching sequences for kraft pulps produced from South African Eucalyptus grandis wood chips, which typically contained high amounts of hexenuronic acids (HexA). The objective of the study was to compare the performance of ozone to other technologies used to remove HexA, such as acid hydrolysis (A) and hot chlorine dioxide (DHT) stages. Bleaching sequences using chlorine dioxide (i.e., OAD0ED1D2 and ODHTED1D2) were compared to bleaching sequences using ozone (i.e., OZD0ED1 and OAZD0ED1). The results showed that ozone preferentially reacted with HexA in the presence of lignin. When applied after oxygen delignification, ozone had the same HexA removal efficiencies as the A- and DHT- stages at dosages in excess of 0.6%. When used in combination with the A-stage, the HexA removal efficiencies of ozone reached 96%. Consequently, up to 15% savings in the estimated bleaching chemical costs were achieved when the OAZD0(EP)D sequence was used, compared to the standard reference sequence (OAD0ED1D2). The residual HexA in the bleached pulp affected brightness reversion of the pulps, but this was only evident for the bleaching sequences that used chlorine dioxide, not for those that included ozone.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (10) ◽  
pp. 663-670 ◽  
Author(s):  
DAVID J. NICHOLSON ◽  
GUSTAVO V. DUARTE ◽  
ERICKA F. ALVES ◽  
DAVID J. KIEMLE ◽  
AARON T. LEAVITT ◽  
...  

High kappa number kraft and soda-anthraquinone (soda-AQ or SAQ) pulps from sugar maple (Acer saccharum) were investigated to see how the lignin-carbohydrate complexes (LCC) they contained affected lignin removal by oxygen, chlorine dioxide, and hydrogen peroxide. The chlorine dioxide and hydrogen peroxide doses were higher than normal because both pulps had unbleached kappa numbers in the range of 61-62. Only oxygen delignification was investigated with the SAQ pulp. The research focused on the strong lignin-carbohydrate (L-C) linkages only. The pulp carbohydrates were enzymatically degraded and solubilized, thus leaving an enzymatic lignin (EL) residue. The highest concentration of bound sugars (glucan, xylan, arabinan, and galactan) on any of the ELs was <2.1 wt%. Chlorine dioxide (D stage) was investigated at end pHs of 2.1, 2.9, and 4.0, followed by extraction with dilute sodium hydroxide. Lignin oligomers containing bound glucan and arabinan were unreactive and accumulated in the fibers. When oxygen was used to delignify kraft and SAQ pulps by ~50%, only ~10% of the lignin bound arabinan was solubilized. Galacto-lignin complexes were somewhat reactive to oxygen and hydrogen peroxide under alkaline conditions, but less reactive in the D stages. Consistent with literature data, xylo-lignin complexes were reactive toward oxygen and toward the other two oxidants. They do not appear to be major impediments in the bleaching process.


2017 ◽  
Vol 52 (4) ◽  
pp. 247-252 ◽  
Author(s):  
M Sarwar Jahan ◽  
MM Uddin ◽  
MA Kashem

Elemental Chlorine Free (ECF) pulp bleaching is now the dominant pulp bleaching process in globally. In most bleachery, chlorine dioxide is over-consumed. About two thirds of the chlorine dioxide is wasted in useless side reactions. In the study, kraft pulp from Gmelina arborea (gamar wood) was bleached by ECF bleaching in modified sequences. Oxygen prebleaching was carried out to decrease ClO2 requirement, which reduced kappa number of kraft pulp by 47.6% and increased pulp brightness by 21.7 percent points. Several sequences were tested based on the application of limited charges of ClO2 during successive ClO2and extraction stage. Application of this concept allowed a 33% reduction of ClO2 to reach target brightness. The kraft pulp could not reach target brightness of 80% in DED sequences using even 30 kg ClO2/ton of pulp, while splitting of same amount of ClO2 charge into DEDED sequences reached the pulp brightness to 81.1%. But oxygen delignified kaft pulp reached 79.6% brightness using 25 kg ClO2/ton of pulp in DED sequences. In the splitting of ClO2 charge into DEDED sequences, Oxygen pulp reached to 85% brightness by using only 20 kg ClO2/ton pulp.Bangladesh J. Sci. Ind. Res. 52(4), 247-252, 2017


2018 ◽  
Vol 8 (01) ◽  
pp. 21 ◽  
Author(s):  
Chandra Apriana Purwita ◽  
Susi Sugesty

Preparation and Characterization of Long Fiber Dissolving Pulp from Spiny Bamboo (Bambusa blumeana)The need for long fiber dissolving pulp in Indonesia can only be met from imports. Bamboo is a nonwood plant and known as source of long fiber. This research aims to study the potential of spiny bamboo to be used as raw material for producing long fiber dissolving pulp. This research was conducted using two different types of raw materials preparation to produce bamboo chip and decorticated bamboo. The pulping process is carried out by pre-hydrolysis kraft and bleaching performed with two different bleaching sequences, i.e Do ED1 D2 and Do EpD1 D2 . Based on the experimental results, spiny bamboo has good potential to be used as raw material for dissolving pulp. Spiny bamboo belongs to long fibers with an average fiber length of 2.46 mm. The dissolving quality depends on the preparation of the raw material and the bleaching sequence. The yield of spiny bamboo dissolving pulp ranged from 37.97 - 40.76% with alpha cellulose content of 94.88 - 98.67%, and viscosity of 16.43 - 25.75 cP. Decorticated bamboo with bleaching sequence of Do EpD1 D2 produced the highest quality of dissolving pulp with the highest brightness and alpha cellulose were 89.61% ISO and 98.67%, respectively.AbstrakKebutuhan dissolving pulp serat panjang di Indonesia hanya dapat dipenuhi melalui impor. Bambu adalah tanaman nonkayu dan dikenal sebagai sumber serat panjang. Penelitian ini bertujuan untuk mempelajari potensi bambu duri untuk dijadikan bahan baku pembuatan dissolving pulp serat panjang. Penelitian ini dilakukan dengan dua jenis persiapan bahan baku yang berbeda untuk menghasilkan serpih bambu dan bambu dekortikasi. Proses pemasakan dilakukan dengan proses pra-hidrolisis kraft dan pemutihan dilakukan dengan dua urutan pemutihan yang berbeda, yaitu  DoED1D2 dan DoEpD1D2. Berdasarkan hasil penelitian, bambu duri memiliki potensi yang baik untuk digunakan sebagai bahan baku pembuatan dissolving pulp. Bambu duri tergolong serat panjang dengan panjang serat rata-rata 2,46 mm. Kualitas dissolving pup yang dihasilkan tergantung dari persiapan bahan baku dan urutan pemutihan. Rendemen dissolving pulp bambu duri berkisar 37,97 - 40,76%, dengan kandungan selulosa alfa 94,88 - 98,67%, dan viskositas 16,43 - 25,75 cP. Bambu dekortikasi dengan urutan pemutihan DoEpD1D2 menghasilkan dissolving pulp paling unggul dengan derajat cerah dan selulosa alfa tertinggi berturut-turut 89,61 %ISO dan 98,67%.Kata kunci: dissolving pulp, bambu duri (Bambusa blumeana), serpih bambu, bambu dekortikasi, prahidrolisis kraft 


2015 ◽  
Vol 50 (1) ◽  
pp. 7-14
Author(s):  
M Sarwar Jahan ◽  
Halima Rahman ◽  
Purabi Rani Samaddar ◽  
Mostafizur Rahman

Jute stick is the woody portion of jute plant. It remains as the leftover after extracting the fibre. The ratio of the stick to fibre is about 2.5:1. For producing dissolving pulp, prehydrolysis is carried out prior to pulping to remove hemicelluloses from the lignocelluloses. In this investigation ethylenediamine (EDA) was used with the cooking liquor to remove hemicelluloses from the jute stick. Increasing EDA charge in soda and kraft liquor decreased pentosans content in the pulp. EDA in kraft liquor showed lower kappa number and pentosans content than in the soda-liquor. Prehydrolysis further improved cellulose content and kappa number of jute stick pulp with the sacrifice of pulp yield. The bleachability of soda-EDA pulp was inferoior to the kraft-EDA and prehydrolysed soda-EDA in ECF bleaching sequences. The final brightness of soda-EDA pulp was 85.1% and kraft-EDA pulp 89.7%. Degraded cellulose (R18-R10) in soda-EDA and kraft-EDA pulps was lower than prehydrolysed pulps. Dissolving pulp can be produced to 93% purity without prehydrolysis by reinforcing EDA in kraft liquor.Bangladesh J. Sci. Ind. Res. 50(1), 7-14, 2015


2020 ◽  
Vol 35 (1) ◽  
pp. 18-24
Author(s):  
Hailong Li ◽  
Chao Du ◽  
Shujuan Ge ◽  
Mengru Liu

AbstractThis study aimed to investigate the oxalate formation mechanism during chlorine dioxide ({\mathrm{ClO}_{2}}) bleaching of bamboo kraft pulp, and thus explore favourable {\mathrm{ClO}_{2}} bleaching conditions to better control oxalate formation. The amount of oxalate formed varied linearly with {\mathrm{ClO}_{2}} dosage within the whole research range, while it rose exponentially within the first 90 mins of pulp bleaching. Then the actual bleaching process was simulated by reacting {\mathrm{ClO}_{2}} with three representative lignin model compounds and comparatively studied. The rule of oxalate formation in the simulated reaction system was identical to that in pulp bleaching by {\mathrm{ClO}_{2}}, except for oxalate production by veratraldehyde with prolonged reaction time. Under identical conditions, vanillin formed the highest amount of oxalate, while veratraldehyde formed the least. Furthermore, the amount of oxalate formed increased by 19.59 mg/kg when the kappa number of the delignified pulp was reduced by one unit. Considering the satisfactory pulp brightness and decreased oxalate formation, the recommended conditions for {\mathrm{ClO}_{2}} bleaching of bamboo kraft pulp were a {\mathrm{ClO}_{2}} dosage of 4 %, 60 °C and 70 mins.


BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 5544-5558
Author(s):  
Caoxing Huang ◽  
Runkun Sun ◽  
Hou-min Chang ◽  
Qiang Yong ◽  
Hasan Jameel ◽  
...  

The objective of this study was to evaluate the possibility of producing dissolving grade pulp from tobacco stalk through combining SO2-ethanol-water (SEW) fractionation, alkaline extraction, and bleaching with oxygen (O), chlorine dioxide (D), alkaline extraction with hydrogen peroxide (Ep), and hydrogen peroxide (P) (OD0(Ep)D1P). The results showed that the optimum SEW cooking condition to remove the original xylan and lignin in tobacco stalk to an acceptable level was 6% SO2 charge (by weight) at 135 °C for 180 min. A bleachable pulp (Kappa number of 21.5) was produced from the SEW-treated tobacco stalk via a subsequent 1% NaOH extraction. After the OD0(Ep)D1P sequence bleaching, the bleached pulp showed a high brightness (88.1% ISO) and a high α-cellulose content (94.9%). The viscosity (15.8 cP) and the residual xylan content (4.4%) of the pulp were within acceptable levels for dissolving pulp production. Thus, tobacco stalk was shown to be a viable raw material for dissolving pulp production following a SEW treatment, alkaline extraction, and a conventional bleaching sequence.


Sign in / Sign up

Export Citation Format

Share Document