Growth performance of immunologically castrated (with Improvest) barrows (with or without ractopamine) compared to gilt, physically castrated barrow, and intact male pigs

2014 ◽  
Vol 92 (5) ◽  
pp. 2289-2295 ◽  
Author(s):  
C. L. Puls ◽  
A. Rojo ◽  
M. Ellis ◽  
D. D. Boler ◽  
F. K. McKeith ◽  
...  
2005 ◽  
Vol 92 (1) ◽  
pp. 31-38 ◽  
Author(s):  
P. Jaros ◽  
E. Bürgi ◽  
K.D.C. Stärk ◽  
R. Claus ◽  
D. Hennessy ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1580
Author(s):  
Jorge R. Kawas ◽  
Jose F. Garcia-Mazcorro ◽  
Hector Fimbres-Durazo ◽  
Maria E. Ortega-Cerrilla

Choline is an essential nutrient for animals, but dietary choline is degraded in the rumen, and thus, should be offered as rumen-protected choline (RPC) in ruminants. In this article, we investigate the effect of RPC supplementation in feedlot lambs. Forty intact male Saint Croix lambs (average: 20.3 kg, 3–4 months of age) on a high grain-low roughage base feed were randomly assigned to four treatments (0, 0.1, 0.2, and 0.3% RPC on dry-matter basis; n = 10 per group). RPC was offered for 90 days after 15 days of adaptation. RPC supplementation was not associated with significant differences in dry matter intake, weight gain, gain:feed ratio, carcass weights, and the dressing percentages. There was a linear decrease in height to the shoulder (p = 0.013) and longissimus muscle area (p = 0.051) with higher RPC levels, and a higher backfat thickness and yield grade with 0.3% RPC compared to 0.1% RPC (p < 0.05). Blood triglycerides concentrations were higher in control (0% RPC) compared to 0.3% RPC (p = 0.008). The lack of significant effects on growth performance and the results on backfat thickness and yield grade, may indicate undesirable effects associated with RPC supplementation. More research is needed to establish the needs and specific quantities of RPC supplementation in feedlot lambs.


Food Chain ◽  
2019 ◽  
Vol 8 (1-2) ◽  
pp. 58-78
Author(s):  
Bazit Bakare ◽  
Olufemi Onifade ◽  
Victoria Ojo ◽  
Kafayat Adebayo ◽  
Anandan Samireddypalle

1981 ◽  
Vol 96 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Mridula Chowdhury ◽  
Robert Tcholakian ◽  
Emil Steinberger

Abstract. It has been suggested that treatment of intact male rats with oestradiol benzoate (OeB) causes an interference with testosterone (T) production by the testes by a direct inhibitory effect on steroidogenesis. To test this hypothesis, different doses (5, 10 or 25 IU) of hCG were administered concomitantly with 50 μg of OeB to adult intact or hypophysectomized male rats. The testicular and plasma testosterone, and serum hCG levels were determined. The sex accessory weights were recorded. In the intact OeB-treated group of animals, hCG stimulated both the secondary sex organs and plasma testosterone levels above the intact control group. However, in hypophysectomized animals, although plasma testosterone levels increased above that of intact controls, their secondary sex organ weights did not. Moreover, inspite of high circulating hCG levels, the testicular testosterone content and concentration remained suppressed in OeB-treated animals. The reason for such dichotomy of hCG action on OeB-treated animals is not clear at present.


2018 ◽  
Vol 239 (3) ◽  
pp. 303-312 ◽  
Author(s):  
H H Farman ◽  
K L Gustafsson ◽  
P Henning ◽  
L Grahnemo ◽  
V Lionikaite ◽  
...  

The importance of estrogen receptor α (ERα) for the regulation of bone mass in males is well established. ERα mediates estrogenic effects both via nuclear and membrane-initiated ERα (mERα) signaling. The role of mERα signaling for the effects of estrogen on bone in male mice is unknown. To investigate the role of mERα signaling, we have used mice (Nuclear-Only-ER; NOER) with a point mutation (C451A), which results in inhibited trafficking of ERα to the plasma membrane. Gonadal-intact male NOER mice had a significantly decreased total body areal bone mineral density (aBMD) compared to WT littermates at 3, 6 and 9 months of age as measured by dual-energy X-ray absorptiometry (DEXA). High-resolution microcomputed tomography (µCT) analysis of tibia in 3-month-old males demonstrated a decrease in cortical and trabecular thickness in NOER mice compared to WT littermates. As expected, estradiol (E2) treatment of orchidectomized (ORX) WT mice increased total body aBMD, trabecular BV/TV and cortical thickness in tibia compared to placebo treatment. E2 treatment increased these skeletal parameters also in ORX NOER mice. However, the estrogenic responses were significantly decreased in ORX NOER mice compared with ORX WT mice. In conclusion, mERα is essential for normal estrogen signaling in both trabecular and cortical bone in male mice. Increased knowledge of estrogen signaling mechanisms in the regulation of the male skeleton may aid in the development of new treatment options for male osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document