Metabolizable Energy of Finishing Beef Cattle Rations with and without Stilbestrol

1969 ◽  
Vol 29 (6) ◽  
pp. 967-971 ◽  
Author(s):  
S. A. Adeyanju ◽  
M. A. Fowler ◽  
Wise Burroughs
1993 ◽  
Vol 56 (1) ◽  
pp. 61-67 ◽  
Author(s):  
R. W. J. Steen

AbstractTwo randomized-block experiments were carried out to examine the relative value of wheat and barley as supplements to grass silage for finishing beef cattle. In each experiment unwilted, formic acid-treated silage was offered ad libitum and supplemented with 500 g soya-bean meal and 50 g minerals and vitamins to 44 12-month-old bulls for 157 and 172 days in experiments 1 and 2 respectively. Twelve of the animals also received 2·5 kg rolled spring barley (LB), 12 received 4·0 kg barley (HB) and 20 received 3·25 kg rolled wheat (W). For experiments 1 and 2 respectively the barley contained 796 and 787 g dry matter (DM) per kg; 118 and 105 g crude protein (CP) per kg DM; 47 and 57 g crude fibre per kg DM; the wheat contained 845 and 800 g DM per kg; 112 and 116 g CP per kg DM; 23 and 25 g crude fibre per kg DM; and the silages contained 190 and 177 g DM per kg; 153 and 176 g CP per kg DM; 80 and 104 g ammonia-nitrogen per kg total nitrogen. On average over the two experiments, for treatments LB, HB and W respectively, silage DM intakes were 5·4, 4·7 (s.e. 0·14) and 4·9 (s.e. 0·11) kg/day; total DM intakes 7·9, 8·3 (s.e. 0·14) and 8·1 (s.e. 0·11) kg/day; metabolizable energy intakes 91·4, 97·8 and 94·2 MJ/day; live-weight gains 1·04,1·19 (s.e. 0·029) and 1·10 (s.e. 0·023) kg/day and carcass gams 0·65, 0·77 (s.e. 0·017) and 0·70 (s.e. 0·013) kg/day. It is concluded that the feeding value of wheat was proportionately 0·98 of that of barley for finishing beef cattle when given as a supplement to grass silage, and that the type of cereal offered did not affect silage intake or carcass composition.


Author(s):  
K E Hales ◽  
C A Coppin ◽  
Z K Smith ◽  
Z S McDaniel ◽  
L O Tedeschi ◽  
...  

Abstract Reliable predictions of metabolizable energy (ME) from digestible energy (DE) are necessary to prescribe nutrient requirements of beef cattle accurately. A previously developed database that included 87 treatment means from 23 respiration calorimetry studies has been updated to evaluate the efficiency of converting DE to ME by adding 47 treatment means from 11 additional studies. Diets were fed to growing-finishing cattle under individual feeding conditions. A citation-adjusted linear regression equation was developed where dietary ME concentration (Mcal/kg of dry matter [DM]) was the dependent variable and dietary DE concentration (Mcal/kg) was the independent variable: ME = 1.0001 × DE – 0.3926; r 2 = 0.99, root mean square prediction error [RMSPE] = 0.04, P < 0.01 for the intercept and slope). The slope did not differ from unity (95% CI = 0.936 to 1.065); therefore, the intercept (95% CI = -0.567 to -0.218) defines the value of ME predicted from DE. For practical use, we recommend ME = DE – 0.39. Based on the relationship between DE and ME, we calculated the citation-adjusted loss of methane, which yielded a value of 0.2433 Mcal/kg of DMI (SE = 0.0134). This value was also adjusted for the effects of dry matter intake (DMI) above maintenance, yielding a citation-adjusted relationship: CH4, Mcal/kg = 0.3344 – 0.05639 × multiple of maintenance; r 2 = 0.536, RMSPE = 0.0245, P < 0.01 for the intercept and slope). Both the 0.2433 value and the result of the intake-adjusted equation can be multiplied by DMI to yield an estimate of methane production. These two approaches were evaluated using a second, independent database comprising 129 data points from 29 published studies. Four equations in the literature that used DMI or intake energy to predict methane production also were evaluated with the second database. The mean bias was substantially greater for the two new equations, but slope bias was substantially less than noted for the other DMI-based equations. Our results suggest that ME for growing and finishing cattle can be predicted from DE across a wide range of diets, cattle types, and intake levels by simply subtracting a constant from DE. Mean bias associated with our two new methane emission equations suggests that further research is needed to determine whether coefficients to predict methane from DMI could be developed for specific diet types, levels of DMI relative to body weight, or other variables that affect the emission of methane.


1979 ◽  
Vol 48 (4) ◽  
pp. 748-757 ◽  
Author(s):  
Mary I. Wray ◽  
W. M. Beeson ◽  
T. W. Perry ◽  
M. T. Mohler ◽  
E. Baugh

2000 ◽  
Vol 2000 ◽  
pp. 124-124
Author(s):  
D.E. Lowe ◽  
R.W.J. Steen ◽  
V.E. Beattie

There is increasing public concern about the welfare of farm animals and one of the issues recently raised has been the use of totally slatted floors for rearing and finishing beef cattle. However, human perception of the needs of animals may not necessarily reflect that of the animals' needs. The objective of this experiment was to examine beef cattle preferences for different floor types, in order to provide scientific information that will be valuable in formulating a policy on the housing requirements of beef cattle.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1696
Author(s):  
Ridha Ibidhi ◽  
Rajaraman Bharanidharan ◽  
Jong-Geun Kim ◽  
Woo-Hyeong Hong ◽  
In-Sik Nam ◽  
...  

This study was performed to update and generate prediction equations for converting digestible energy (DE) to metabolizable energy (ME) for Korean Hanwoo beef cattle, taking into consideration the gender (male and female) and body weights (BW above and below 350 kg) of the animals. The data consisted of 141 measurements from respiratory chambers with a wide range of diets and energy intake levels. A simple linear regression of the overall unadjusted data suggested a strong relationship between the DE and ME (Mcal/kg DM): ME = 0.8722 × DE + 0.0016 (coefficient of determination (R2) = 0.946, root mean square error (RMSE) = 0.107, p < 0.001 for intercept and slope). Mixed-model regression analyses to adjust for the effects of the experiment from which the data were obtained similarly showed a strong linear relationship between the DE and ME (Mcal/kg of DM): ME = 0.9215 × DE − 0.1434 (R2 = 0.999, RMSE = 0.004, p < 0.001 for the intercept and slope). The DE was strongly related to the ME for both genders: ME = 0.8621 × DE + 0.0808 (R2 = 0.9600, RMSE = 0.083, p < 0.001 for the intercept and slope) and ME = 0.7785 × DE + 0.1546 (R2 = 0.971, RMSE = 0.070, p < 0.001 for the intercept and slope) for male and female Hanwoo cattle, respectively. By BW, the simple linear regression similarly showed a strong relationship between the DE and ME for Hanwoo above and below 350 kg BW: ME = 0.9833 × DE − 0.2760 (R2 = 0.991, RMSE = 0.055, p < 0.001 for the intercept and slope) and ME = 0.72975 × DE + 0.38744 (R2 = 0.913, RMSE = 0.100, p < 0.001 for the intercept and slope), respectively. A multiple regression using the DE and dietary factors as independent variables did not improve the accuracy of the ME prediction (ME = 1.149 × DE − 0.045 × crude protein + 0.011 × neutral detergent fibre − 0.027 × acid detergent fibre + 0.683).


2008 ◽  
Author(s):  
Daniel G. Morrical ◽  
Mark S. Honeyman ◽  
James R. Russell ◽  
Daryl R. Strohbehn ◽  
Dallas L. Maxwell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document