scholarly journals BROADBAND AND HIGH-GAIN PLANAR VIVALDI ANTENNAS BASED ON INHOMOGENEOUS ANISOTROPIC ZERO-INDEX METAMATERIALS

2011 ◽  
Vol 120 ◽  
pp. 235-247 ◽  
Author(s):  
Bin Zhou ◽  
Hui Li ◽  
Xiaying Zou ◽  
Tie-Jun Cui
2016 ◽  
Vol 65 ◽  
pp. 33-43
Author(s):  
Ada-Simona Popescu ◽  
Igor Bendoym ◽  
Taulant Rexhepi ◽  
David Crouse
Keyword(s):  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
C. Liu ◽  
A. Yan ◽  
C. Yu ◽  
T. Xu

A novel antipodal Vivaldi antenna with tapering serrated structure at the edges is proposed. Compared with traditional Vivaldi antennas without serrated structure, the gain of the designed antenna is significantly improved in the desired frequency band (4.5–7.5 GHz). In addition, a 2 × 2 Vivaldi antenna array with an orthorhombic structure is designed and fabricated to achieve a circular polarization (CP) characteristic. With this configuration, the 3 dB axial ratio bandwidth of the array reaches about 42% with respect to the center frequency of 6 GHz and a high gain is achieved as well. The novel Vivaldi antenna and CP antenna array both have ultrawide band (UWB) and high-gain characteristics, which may be applied to the field of commercial communication, remote sensing, and so forth.


Author(s):  
Luong Xuan Truong ◽  
Truong Vu Bang Giang ◽  
Tran Minh Tuan

This paper proposes a new design of low sidelobe level (SLL) and high gain linear printed Vivaldi antenna array. The array composes of two parts, which are a linear Vivaldi antenna array and a back reflector. The array consists of 10 single Vivaldi antennas and a series-fed network, those are based on Roger RO4003C substrate (ε = 3.55) with the dimension of 140 x 450 x 1.524 mm3. A new Bat algorithm with the amplitude-only control technique has been applied to optimize the output coefficients of the series-fed network for gaining a low SLL. The simulation results indicate that the proposed antenna provides a low SLL of -29.2 dB in E-plane with a high gain of 16.5 dBi at the frequency of 3500 MHz. A prototype of the proposed antenna array has been fabricated. The measured data has a good agreement with the simulated data.


Author(s):  
Alexander A. Golovkov ◽  
Polina V. Terenteva ◽  
Alexander G. Zhuravlev ◽  
Michail S. Shmyrin ◽  
Nikolay S. Stenyukov

Nowadays Vivaldi antennas are used as directional emitters with matching and balancing device at the input. As a rule, these devices cause additional losses in case of broadband operation. Besides, the use of the device leads to radiator pattern distortions, especially when operating in a wide frequency range. Stringent operating requirements (wide operating temperature, high humidity, salt fog, vibration, etc.), make the choice of proper chip very complicated. The aim of the study is to develop a slot antenna with a 50-ohm port at the input, which would be easy to manufacture and operate, while maintaining high gain in a wide frequency range. As is known, the field structure in the coplanar line is close to the field structure in the slit field close to it. As is known, the field structure in the coplanar line is similar to the field structure in the slot line. Using mathematics for such fields, means of electrodynamic modeling and numerical calculation, a system is developed that consists of two Vivaldi antennas fed by one coplanar line. Thus, the emitter has a close to a circular pattern and low losses in the structure of feeding, matching and balancing, the functions of which are performed by the coplanar line. The results are given for the frequency range of 1-6 GHz. The device as a whole is a dielectric substrate with radiating structure made as double-sided metallization. Finline-based emitters are acceptable to use for operation in higher frequencies. Antenna has low manufacturing cost and it is easy to repeat. Currently the authors are continuing work on the study of the use of such elements as part of antenna arrays.


Sign in / Sign up

Export Citation Format

Share Document