scholarly journals ON THE RAIN-INDUCED MUTUAL COUPLING EFFECT OF MULTIPLE-INPUT MULTIPLE-OUTPUT COMMUNICATION SYSTEMS AT MILLIMETER WAVE BAND

2015 ◽  
Vol 43 ◽  
pp. 51-62
Author(s):  
Shu-Hong Gong ◽  
Xuan Wang ◽  
Daopu Yan

The need of wireless communication is increasing day to day life and it is mostly depends on spectral efficiency and bandwidth. The current operating wireless technologies are ranging between 300MHz to 3GHz band; consequently the 5G wireless network depends up on high frequency millimeter wave band ranging between 3GHz to 300GHz. The spectral efficiency can be improved by using Massive Multiple Input Multiple Output (MIMO) Technology. In this paper we are discussing MIMO along with some emerging technologies are present in 5G, they are Millimeter Wave, Beam Forming, and Beam Steering. By using these technologies the capacity is increased, higher data rates will be obtained, latency can be reduced and enhanced quality of service will occur.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 519
Author(s):  
Gianmarco Romano

Massive multiple-input multiple-output (mMIMO) communication systems and the use of millimeter-wave (mm-Wave) bands represent key technologies that are expected to meet the growing demand of data traffic and the explosion of the number of devices that need to communicate over 5G/6G wireless networks [...]


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 927 ◽  
Author(s):  
Alemaishat ◽  
Saraereh ◽  
Khan ◽  
Affes ◽  
Li ◽  
...  

Aiming at the problem of high computational complexity due to a large number of antennas deployed in mmWave massive multiple-input multiple-output (MIMO) communication systems, this paper proposes an efficient algorithm for optimizing beam control vectors with low computational complexity based on codebooks for millimeter-wave massive MIMO systems with split sub-arrays hybrid beamforming architecture. A bidirectional method is adopted on the beam control vector of each antenna sub-array both at the transmitter and receiver, which utilizes the idea of interference alignment (IA) and alternating optimization. The simulation results show that the proposed algorithm has low computational complexity, fast convergence, and improved spectral efficiency as compared with the state-of-the-art algorithms.


Author(s):  
M. F. Ismail ◽  
H. A. Majid ◽  
C. Macwright ◽  
M. N. A. H. Shaabani ◽  
M. S. Mohd ◽  
...  

A study on the compact array microstrip patch antenna for multiple-input multiple-output (MIMO) communication system based on the antenna arrangement is performed. The 2.45 GHz rectangular array are arranged in 45 degree slanted inward and outward for each other to reduce the mutual coupling effect between the patches. The antenna properties are analyzed and compact antenna design is determined based on the simulation results. The results show the antennas can very compact while maintaining low mutual coupling. The gain of the MIMO antenna is 11.3 dBi. The simulated and tested return losses, together with the radiation patterns, are presented and discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hao Guo ◽  
Behrooz Makki ◽  
Tommy Svensson

Initial access (IA) is identified as a key challenge for the upcoming 5G mobile communication system operating at high carrier frequencies, and several techniques are currently being proposed. In this paper, we extend our previously proposed efficient genetic algorithm- (GA-) based beam refinement scheme to include beamforming at both the transmitter and the receiver and compare the performance with alternative approaches in the millimeter wave multiuser multiple-input-multiple-output (MU-MIMO) networks. Taking the millimeter wave communications characteristics and various metrics into account, we investigate the effect of different parameters such as the number of transmit antennas/users/per-user receive antennas, beamforming resolutions, and hardware impairments on the system performance employing different beam refinement algorithms. As shown, our proposed GA-based approach performs well in delay-constrained networks with multiantenna users. Compared to the considered state-of-the-art schemes, our method reaches the highest service outage-constrained end-to-end throughput with considerably less implementation complexity. Moreover, taking the users’ mobility into account, our GA-based approach can remarkably reduce the beam refinement delay at low/moderate speeds when the spatial correlation is taken into account. Finally, we compare the cases of collaborative users and noncollaborative users and evaluate their difference in system performance.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Sign in / Sign up

Export Citation Format

Share Document