scholarly journals An Overview of Computational Studies on Colloidal Semiconductor Nanocrystals

2021 ◽  
Vol 75 (5) ◽  
pp. 427-434
Author(s):  
Roberta Pascazio ◽  
Juliette Zito ◽  
Ivan Infante

In the last two decades, colloidal semiconductor nanocrystals have emerged as a phenomenal research topic due to their size-dependent optoelectronic properties and to their outstanding versatility in many technological applications. In this review, we provide an historical account of the most relevant computational works that have been carried out to understand atomistically the electronic structure of these materials, including the main requirements needed for the preparation of nanocrystal models that align well with the experiments. We further discuss how the advancement of these computational tools has affected the analysis of these nanomaterials over the years. We focus our review on the three main families of colloidal semiconductor nanocrystals: group II-VI and IV-VI metal chalcogenides, group III-V metal pnictogenides and metal halides, in particular lead-based halide perovskites. We discuss the most recent research frontiers and outline the future outlooks expected in this field from a computational perspective.

2017 ◽  
Vol 147 (15) ◽  
pp. 154102 ◽  
Author(s):  
D. L. Ferreira ◽  
J. C. L. Sousa ◽  
R. N. Maronesi ◽  
J. Bettini ◽  
M. A. Schiavon ◽  
...  

Author(s):  
Min Li ◽  
Cong Wang ◽  
Lude Wang ◽  
Han Zhang

The rapid development of photonic devices requires the exploration of novel materials with superior nonlinear optical (NLO) properties. Colloidal semiconductor nanocrystals (NCs) exhibit size-tunable exciton resonances and excellent NLO properties....


Nature ◽  
2000 ◽  
Vol 407 (6807) ◽  
pp. 981-983 ◽  
Author(s):  
Moonsub Shim ◽  
Philippe Guyot-Sionnest

Small ◽  
2010 ◽  
Vol 6 (13) ◽  
pp. 1364-1378 ◽  
Author(s):  
Nikolai Gaponik ◽  
Stephen G. Hickey ◽  
Dirk Dorfs ◽  
Andrey L. Rogach ◽  
Alexander Eychmüller

Sign in / Sign up

Export Citation Format

Share Document