scholarly journals 3D-volldigitalisierte Behandlungsplanung bei Lippen-Kiefer-Gaumenspalten (LKGS-3D)

2021 ◽  
Author(s):  
Christiane Keil ◽  
◽  
Dominik Haim ◽  
Ines Zeidler-Rentzsch ◽  
Franz Tritschel ◽  
...  
Keyword(s):  
3D Scan ◽  

Die Idealvorstellung eines vollständig digitalisierten Behandlungsalltags rückt mit fortschreitender technologischer und informationeller Entwicklung stetig näher an die Realität. Zu Beginn bestand lediglich die Möglichkeit einer elektronischen Patientenakte, hinzu kamen vielfältige Möglichkeiten der digitalen Bildgebung und wurden schließlich um das Ziel eines vollständigen digitalen Workflows ergänzt. Die Planung der interdisziplinären kieferorthopädischen / kieferchirurgischen Versorgung von Patienten mit Lippen-Kiefer-Gaumen-Spalten (LKGS) wurde bis vor kurzem am Universitätsklinikum Dresden noch hauptsächlich analog durchgeführt. Eine volldigitalisierte Behandlungsplanung unter Einbeziehung aller beteiligten Behandler fand nicht statt. Ziel des Projektes war es deshalb, eine digitale Plattform zur interdisziplinären zahnmedizinischen Versorgung von LKGS-Patienten zu schaffen. Dazu wurde zuerst die bisher erforderliche Abdrucknahme mittels Alginat und die anschließende Herstellung eines Gipsmodells durch einen intraoralen 3D-Scan der Zahnbögen des Patienten abgelöst. Anhand des intraoralen 3D-Scans können nun die erforderlichen Trinkplatten mittels 3D-Druck erstellt werden. Zweiter Schritt war die Anfertigung von 3D-Aufnahmen der Weichteile des Gesichtes mittels eines extraoralen 3D-Scanners. Als dritter Schritt erfolgte die Anfertigung von Digitalen Volumentomografie (DVT)-Aufnahmen zur 3D-Darstellung des Schädelknochens und Kieferskeletts. Nach der Anfertigung wurden diese bildbasierten Datensätze zu einem „digitalen Zwilling“ (virtuelles 3D-Modell aus DVT, intra- und extraoralen 3D-Scan) zusammengefasst, wodurch erstmalig ein umfassendes 3D-Modell des Mund-Kiefer-Raumes einschließlich wichtiger Informationen zum Kiefergelenk und der anliegenden Weichteile entstand. Dieses virtuelle Modell bildet jetzt die Grundlage für die Behandlungsplanung und die Planung der weiteren zahnmedizinischen und medizinischen Versorgung. Es konnte also im Projekt die komplette Digitalisierung der Diagnostik, die Etablierung einer Fusionsplattform und der Datenaustausch zwischen Uniklinik und privater Praxis umgesetzt werden.

2018 ◽  
Vol 50 (06) ◽  
pp. 393-399 ◽  
Author(s):  
Konstantin Christoph Koban ◽  
Virginia Titze ◽  
Lucas Etzel ◽  
Konstantin Frank ◽  
Thilo Schenck ◽  
...  
Keyword(s):  

Zusammenfassung Hintergrund Zur Diagnostik und Therapieevaluation des Lip- und Lymphödems werden im klinischen Alltag weiterhin Maßbandmessungen eingesetzt. Hierbei werden ausgehend von standardisierten Umfangsmessungen im Bereich der betroffenen Extremitäten deren Volumina errechnet. Andere Verfahren wie Wasserverdrängung werden nicht regelhaft eingesetzt.Ziel dieser Studie war die Erprobung eines 3D Scanners als alternatives und reproduzierbares Tool zur objektiven Erfassung der Volumina der unteren Extremität. Patienten, Material und Methoden Wir führten an 20 Probanden 3D Scans der unteren Extremitäten mit einem handelsüblichen 3D Scanner, dem Artec Eva® durch, und errechneten das Volumen mit der dazugehörigen Software. Das Volumen der Extremitäten wurde zudem gemäß standardisierter Verfahren durch die Umfangsmethode (Konusmethode und Scheibenmethode) sowie per Wasserverdrängungstechnik bestimmt. Die Ergebnisse sowie Durchführungsdauer der drei Messmethoden wurde dokumentiert und statistisch ausgewertet. Ergebnisse Mittels 3D Volumetrie zeigten sich keine signifikanten Abweichungen zur Wasserverdrängung (p > 0,05). Die Konusmethode überschätzte signifikant das in der Wasserverdrängung und 3D Volumetrie gemessene Volumen deutlich. Die Scheibenmethode zeigte keine statistisch signifikanten Abweichungen, jedoch klinisch relevant hohe Abweichungen mit einer ausgeprägten Varianz im 95 % Konfidenzintervall. Alle Verfahren zeigten hohe positive Korrelationen zueinander. Die Wasserverdrängung zeigte sich mit dem größten zeitlichen Aufwand verbunden. Schlussfolgerung Unserer Ergebnisse nach Untersuchung von 40 unteren Extremitäten zeigen, dass durch 3D Scans und Software-basierte volumetrische Berechnung in kurzer Zeit objektive und reproduzierbare Ergebnisse erzielt werden können. Die Abweichung gegenüber dem Goldstandard


2018 ◽  
Vol 7 (4.11) ◽  
pp. 179 ◽  
Author(s):  
M. R. Shahrin ◽  
F. H. Hashim ◽  
W. M.D.W. Zaki ◽  
A. Hussain ◽  
T. T. Raj

Most 3D scanners are heavy, bulky and costly. These are the major factors that make them irrelevant to be attached to a drone for autonomous navigation. With modern technologies, it is possible to design a simple 3D scanner for autonomous navigation. The objective of this study is to design a cost effective 3D indoor mapping system using a 2D light detection and ranging (LiDAR) sensor for a drone. This simple 3D scanner is realised using a LiDAR sensor together with two servo motors to create the azimuth and elevation axes. An Arduino Uno is used as the interface between the scanner and computer for the real-time communication via serial port. In addition, an open source Point-Cloud Tool software is used to test and view the 3D scanner data. To study the accuracy and efficiency of the system, the LiDAR sensor data from the scanner is obtained in real-time in point-cloud form. The experimental results proved that the proposed system can perform the 2D and 3D scans with tolerable performance.  


2020 ◽  
Author(s):  
Markus Beck ◽  
Manuela Brunk ◽  
Alice Wichelhaus ◽  
Thomas Mittlmeier ◽  
Robert Rotter

Abstract PurposeInjuries of the distal syndesmosis in ankle fractures are traditionally treated with a temporary adjusting screw fixation. Conventional fluoroscopic and X-ray examinations cannot reliably diagnose malpositions of the fixed tibiofibular syndesmosis. Postoperative computer tomography allows a reliable control of the transfixed region. The aim of the study was to clarify whether an intraoperative 3D image intensifier examination can detect malpositions of the syndesmosis already intraoperatively and whether the examination has an influence on the postoperative revision rate.MethodsIn 200 patients with tibiofibular syndesmosis injuries, an intraoperative 3D scan was performed after reduction of the distal tibiofibular syndesmosis and placement of the adjusting screw. Postoperative computer tomography of both ankle joints was performed in all patients.Results15% of all intraoperative 3D scans (30 patients) showed a finding requiring correction in the area of the ankle fork. In 7% of the cases, a malposition of the fibula in the tibial incisura requiring correction was found. Further corrections were necessary due to the extent and position of the osteosynthesis material (7%) and for the removal of joint bodies (1%). Postoperative computer tomographies of the ankle joints showed no deformities requiring revision.ConclusionAn intraoperative 3D scan allows a reliable assessment of the injured ankle region and reduces the postoperative revision rate. This makes a postoperative routine CT examination of the ankle joint dispensable.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 560
Author(s):  
Sofia Zahia ◽  
Begonya Garcia-Zapirain ◽  
Jon Anakabe ◽  
Joan Ander ◽  
Oscar Jossa Bastidas ◽  
...  

This papers presents a comparative study of three different 3D scanning modalities to acquire 3D meshes of stoma barrier rings from ostomized patients. Computerized Tomography and Structured light scanning methods were the digitization technologies studied in this research. Among the Structured Light systems, the Go!Scan 20 and the Structure Sensor were chosen as the handheld 3D scanners. Nineteen ostomized patients took part in this study, starting from the 3D scans acquisition until the printed ostomy patches validation. 3D mesh processing, mesh generation and 3D mesh comparison was carried out using commercial softwares. The results of the presented study show that the Structure Sensor, which is the low cost structured light 3D sensor, has a great potential for such applications. This study also discusses the benefits and reliability of low-cost structured light systems.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 97 ◽  
Author(s):  
Jarosław Fastowicz ◽  
Marek Grudziński ◽  
Mateusz Tecław ◽  
Krzysztof Okarma

A rapid development and growing popularity of additive manufacturing technology leads to new challenging tasks allowing not only a reliable monitoring of the progress of the 3D printing process but also the quality of the printed objects. The automatic objective assessment of the surface quality of the 3D printed objects proposed in the paper, which is based on the analysis of depth maps, allows for determining the quality of surfaces during printing for the devices equipped with the built-in 3D scanners. In the case of detected low quality, some corrections can be made or the printing process may be aborted to save the filament, time and energy. The application of the entropy analysis of the 3D scans allows evaluating the surface regularity independently on the color of the filament in contrast to many other possible methods based on the analysis of visible light images. The results obtained using the proposed approach are encouraging and further combination of the proposed approach with camera-based methods might be possible as well.


Author(s):  
Yusheng Yang ◽  
Tianyun Yuan ◽  
Toon Huysmans ◽  
Willemijn Elkhuizen ◽  
Farzam Tajdari ◽  
...  

Abstract A high-fidelity digital representation of the human body is a key enabler for integrating humans in a digital twin. Among different parts of human body, building the model of the hand can be a challenging task due to the posture deviations among collected scans. In this paper, we proposed a posture invariant hand statistical shape model (SSM) based on 59 3D scans of human hands. First, the 3D scans were spatially aligned using a Möbius sphere-based algorithm. An articulated skeleton, which contains 20 bone segments and 16 joints, was embedded for each 3D scan. Then all scans were aligned to the same posture using the skeleton and the linear blend skinning algorithm. Three methods, i.e. Principal Component Analysis (PCA), kernel-PCA with different kernel functions, and Independent Component Analysis, were evaluated in the construction of the SSMs regarding the compactness, the generalization ability and the specificity. The PCA-based SSM was selected, where 20 principal components were used as parameters for the model. Results of the leave-one-out validation indicate that the proposed model was able to fit a given 3D scan of the human hand at an accuracy of 1.21 ± 0.14 mm. Experiment results also indicated that the proposed SSM outperforms the SSM that was built on the scans without posture correction. It is concluded that the proposed posture correction approach can effectively improve the accuracy of the hand SSM, therefore enables its wide usage in human integrated digital twin applications.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
D. Storti

3D imaging has become a standard tool in medical diagnostics and, while software is available to visualize volumetric data sets, we do not yet have software that can efficiently transform 3D scan data to solid models that are useful for engineering design and analysis. Why not? Currently, deriving solid models from 3D scans involves 3 steps: (1) segmentation: identification of voxels associated with the structure; (2) polygonization: computing a set of polygons that approximate the surface of the structure; and (3) repair: removing stray voxels and polygons, specifying connectivity, and establishing consistent orientation. Significant progress has been made on accurate, automated segmentation (recent work by Hu et al. (Image Segmentation and Registration for the Analysis of Joint Motion From 3D MRI,” Proc SPIE 6141, pp. 133–142, Medical Imaging: Visualization, Image-Guided Procedures, & Display, 2006), combining graph cuts with level sets is of particular interest) but effective polygonization cannot be guaranteed. In the worst case, manual repairs are needed to patch holes and remove stray elements. Even if a valid boundary representation (b-rep) model is obtained, accurate models contain so many polygons that modeling operations become unfeasible. Moreover, regardless of accuracy, the surface of a polyhedral model will never be truly smooth. In previous work (Storti, D., et al., Artifact vs. Anatomy: Dealing With Conflict of Geometric Modeling Descriptions,” SAE 2007 Transactions Journal of Passenger Cars: Electronic and Electrical Systems, Paper No. 2007-01-2450, Vol. 116, pp. 813–823, 2007), we proposed overcoming the barriers to creating solid models from 3D scans by employing a new solid modeling description, wavelet SDF-reps, that lies much closer to the native 3D scan format and eliminates polygonization. Here, we focus on the ability to produce models with smooth surfaces that are important for various biomedical simulations. For example, careful studies of joint function involve detailed modeling of ligament wrapping; i.e., connective tissue moving across bone surface as the joint configuration changes. Realistic behavior cannot be obtained if the ligament is snagging on or snapping across convex vertices of a polyhedral model. Similarly, haptic simulation of a catheter navigating through the circulatory system cannot be realistic if the catheter gets stuck in concave vertices of the anatomical model. How can the new modeling format address such issues? Wavelet SDF-reps take advantage of a by-product of the segmentation algorithm (Hue et al.) which converts the raw voxel intensity values to a grid of signed distance values. Applying an appropriate interpolant such as Daubechies wavelets (Daubechies, I., Wavelets, CBMS-NS Series in Applied Mathematics, SIAM Publications, Philadelphia, 1992) then produces an implicit or function-based (f-rep) solid model of the segmented structure. Wavelet SDF-reps are inherently multi-resolution and support significant data compression and medial axis computation. We illustrate the capability of wavelet SDF-reps to support smooth models and enable analysis of curvature features.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2716
Author(s):  
Sri Harsha Turlapati ◽  
Dino Accoto ◽  
Domenico Campolo

Localisation of geometric features like holes, edges, slots, etc. is vital to robotic planning in industrial automation settings. Low-cost 3D scanners are crucial in terms of improving accessibility, but pose a practical challenge to feature localisation because of poorer resolution and consequently affect robotic planning. In this work, we address the possibility of enhancing the quality of a 3D scan by a manual ’touch-up’ of task-relevant features, to ensure their automatic detection prior to automation. We propose a framework whereby the operator (i) has access to both the actual work-piece and its 3D scan; (ii) evaluates the missing salient features from the scan; (iii) uses a haptic stylus to physically interact with the actual work-piece, around such specific features; (iv) interactively updates the scan using the position and force information from the haptic stylus. The contribution of this work is the use of haptic mismatch for geometric update. Specifically, the geometry from the 3D scan is used to predict haptic feedback at a point on the work-piece surface. The haptic mismatch is derived as a measure of error between this prediction and the real interaction forces from physical contact at that point on the work-piece. The geometric update is driven until the haptic mismatch is minimised. Convergence of the proposed algorithm is first numerically verified on an analytical surface with simulated physical interaction. Error analysis of the surface position and orientations were also plotted. Experiments were conducted using a motion capture system providing sub-mm accuracy in position and a 6 axis F/T sensor. Missing features are successfully detected after the update of the scan using the proposed method in an experiment.


2021 ◽  
Author(s):  
Markus Beck ◽  
Manuela Brunk ◽  
Alice Wichelhaus ◽  
Thomas Mittlmeier ◽  
Robert Rotter

Abstract Background: Injuries of the distal syndesmosis in ankle fractures are traditionally treated with a temporary adjusting screw fixation. Conventional fluoroscopic and X-ray examinations cannot reliably diagnose malpositions of the fixed tibiofibular syndesmosis. Postoperative computer tomography allows a reliable control of the transfixed region.The aim of the retrospective single-study was to clarify whether an intraoperative 3D image intensifier examination can detect malpositions of the syndesmosis already intraoperatively and whether the examination has an influence on the postoperative revision rate.Methods: In 200 patients with tibiofibular syndesmosis injuries, an intraoperative 3D scan was performed after reduction of the distal tibiofibular syndesmosis and placement of the adjusting screw. Postoperative computer tomography of both ankle joints was performed in all patients. Results: 15% of all intraoperative 3D scans (30 patients) showed a finding requiring correction in the area of the ankle joint. In 7% of the cases, a malposition of the fibula in the tibial incisura requiring correction was found. Further corrections were necessary due to the extent and position of the osteosynthesis material (7%) and for the removal of joint bodies (1%). Postoperative computer tomographies of the ankle joints showed no deformities requiring revision. Conclusion: An intraoperative 3D scan allows a reliable assessment of the injured ankle region and reduces the postoperative revision rate. This makes a postoperative routine CT examination of the ankle joint dispensable.


2020 ◽  
Author(s):  
Markus Beck ◽  
Manuela Brunk ◽  
Alice Wichelhaus ◽  
Thomas Mittlmeier ◽  
Robert Rotter

Abstract Background: Injuries of the distal syndesmosis in ankle fractures are traditionally treated with a temporary adjusting screw fixation. Conventional fluoroscopic and X-ray examinations cannot reliably diagnose malpositions of the fixed tibiofibular syndesmosis. Postoperative computer tomography allows a reliable control of the transfixed region.The aim of the retrospective single-study was to clarify whether an intraoperative 3D image intensifier examination can detect malpositions of the syndesmosis already intraoperatively and whether the examination has an influence on the postoperative revision rate. Methods: In 200 patients with tibiofibular syndesmosis injuries, an intraoperative 3D scan was performed after reduction of the distal tibiofibular syndesmosis and placement of the adjusting screw. Postoperative computer tomography of both ankle joints was performed in all patients. Results: 15% of all intraoperative 3D scans (30 patients) showed a finding requiring correction in the area of the ankle joint. In 7% of the cases, a malposition of the fibula in the tibial incisura requiring correction was found. Further corrections were necessary due to the extent and position of the osteosynthesis material (7%) and for the removal of joint bodies (1%). Postoperative computer tomographies of the ankle joints showed no deformities requiring revision. Conclusion: An intraoperative 3D scan allows a reliable assessment of the injured ankle region and reduces the postoperative revision rate. This makes a postoperative routine CT examination of the ankle joint dispensable.


Sign in / Sign up

Export Citation Format

Share Document