scholarly journals Direct Laser Deposition for Tailored Structure

2021 ◽  
Author(s):  
Alessia Teresa Silvestri ◽  
Sasan Amirabdollahian ◽  
Matteo Perini ◽  
Paolo Bosetti ◽  
Antonino Squillace

In the context of Industry 4.0, interest is increasing towards Additive Manufacturing processes due to their several advantages. Among these, the Direct Laser Deposition (DLD) is an innovative technology for additive metal part fabrication, and it is currently demonstrating its ability to revolutionize the manufacturing industry. It is particularly interesting for industrial applications in terms of reduction of waste materials by starting with fewer feedstocks, reduction of machining time by only have material where it is needed but, above all, it is interesting to extend the life of parts. Indeed, with the DLD, it is possible to repair an item or coat parts via cladding, making it more wear-resistant. It is also possible to give "another life" to broken or waste components, for example, by replacing the damaged area using new material. Moreover, particularly intriguing is the possibility to create hybrid or graded parts by varying material/alloy concentrations. This paper aims to combine the abovementioned advantages to develop tailored structures in order to accomplish complex and functional products. For this purpose, a specific case study was investigated, starting with the study of the appropriate powders to use and ending with the printing process using the DMG Mori Lasertec65. Microstructural and mechanical analyses were carried out to evaluate the products and to validate the process. The final results show the properties and performances of products obtained using this technology.

Author(s):  
Divya Kanakanala ◽  
Swathi Routhu ◽  
Jianzhong Ruan ◽  
Xiaoqing Frank Liu ◽  
Frank Liou

With multi-axis capability, direct laser deposition process can produce a metal part without the usage of support structures. In order to fully utilize such a capability, the paper discusses a slicing method for multi-axis metal deposition process. Using the geometry information of adjacent layers, the slicing direction and layer thickness can be changed as needed. A hierarchy structure is designed to manage the topological information which is used to determine the slicing sequence. Its usage is studied to build overhang type structure. With such a character, some overhang features such as holes, can be deposited directly to save the required machining operation and material cost, which improves the efficiency of the metal deposition process. Combined with direct 3D layer deposition technique, the multi-axis slicing method is implemented.


Vacuum ◽  
2019 ◽  
Vol 161 ◽  
pp. 225-231 ◽  
Author(s):  
Qiang Wang ◽  
Song Zhang ◽  
Chunhua Zhang ◽  
Jianqiang Wang ◽  
M. Babar Shahzad ◽  
...  

Author(s):  
Christopher Katinas ◽  
Shunyu Liu ◽  
Yung C. Shin

Understanding the capture efficiency of powder during direct laser deposition (DLD) is critical when determining the overall manufacturing costs of additive manufacturing (AM) for comparison to traditional manufacturing methods. By developing a tool to predict the capture efficiency of a particular deposition process, parameter optimization can be achieved without the need to perform a costly and extensive experimental study. The focus of this work is to model the deposition process and acquire the final track geometry and temperature field of a single track deposition of Ti–6Al–4V powder on a Ti–6Al–4V substrate for a four-nozzle powder delivery system during direct laser deposition with a LENS™ system without the need for capture efficiency assumptions by using physical powder flow and laser irradiation profiles to predict capture efficiency. The model was able to predict the track height and width within 2 μm and 31 μm, respectively, or 3.3% error from experimentation. A maximum of 36 μm profile error was observed in the molten pool, and corresponds to errors of 11% and 4% in molten pool depth and width, respectively. Based on experimentation, the capture efficiency of a single track deposition of Ti–6Al–4V was found to be 12.0%, while that from simulation was calculated to be 11.7%, a 2.5% deviation.


2021 ◽  
Vol 1037 ◽  
pp. 3-12
Author(s):  
Maxim Oleynik ◽  
Alexander I. Khaimovich ◽  
Andrey V. Balaykin

The paper describes determining the optimal direct laser deposition mode when processing the results of a two-factor experiment by the steep ascent method. The dependence of the ultimate tensile strength on the volumetric energy density and the lateral pitch was chosen as the target function.


2019 ◽  
Vol 238 ◽  
pp. 210-213 ◽  
Author(s):  
Yanchuan Tang ◽  
Haichao Yang ◽  
Daosi Huang ◽  
Longzhi Zhao ◽  
Dejia Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document