scholarly journals DEVELOPMENT OF A MATHEMATICAL MODEL FOR RESEARCHING THE PROCESS OF REDUCTION OF TUNGSTEN HEXAFLUORIDE BY GASEOUS HYDROGEN

Author(s):  
А.К. Шубин

В работе рассмотрена математическая модель, описывающая движение течения стационарной, ламинарной, вязкой, несжимаемой смеси газа в трехмерном осесимметричном канале. Математическая модель, описывающая этот процесс, состоит из уравнений Навье – Стокса, уравнения неразрывности и массообмена, которые записаны в безразмерной форме с учетом осесимметричности в цилиндрической системе координат. Решение уравнений осуществляется в физических переменных «скорость – давление» на разнесенной разностной сетке. Показано влияние характерных параметров на распределение концентрации смеси газа гексафторида вольфрама и водорода в канале. Полученная математическая модель позволяет проводить численные исследования по выбору оптимальных условий осуществления процесса восстановления гексафторида вольфрама водородом. The paper considers a mathematical model describing the flow motion of a stationary, laminar, viscous, incompressible gas mixture in a three-dimensional axisymmetric channel. The mathematical model describing this process consists of the Navier-Stokes equations, the continuity and mass transfer equations, which are written in dimensionless form taking into account axisymmetry in a cylindrical coordinate system. The equations are solved in the physical variables "velocity - pressure" on a spaced difference grid. The influence of characteristic parameters on the concentration distribution of a mixture of tungsten hexafluoride gas and hydrogen in the channel is shown. The obtained mathematical model makes it possible to conduct numerical studies on the choice of optimal conditions for the process of reduction of tungsten hexafluoride with hydrogen.

Author(s):  
Hyeung Seok Heo ◽  
Yong Kweon Suh

In this study a newly fabricated micromixer is proposed. This design comprises periodically arranged simple blocks. In this configuration, the stirring is greatly enhanced at a certain parameter set. This device is fabricated by rapid prototyping technology, stereolithography method, so that we can reduce the R&D time and cost. To characterize the flow field and the stirring effect both the numerical and experimental methods were employed. To obtain the material deformation, three-dimensional numerical computation to the Navier Stokes equations are performed by using a commercial code, FLUENT 6.0. Numerical results show that materials are deformed by the counter clockwise spiral motion of the secondary flows. In the experiment, flow visualization for the stirring effect is performed by using pure water in one reservoir and water mixed with a fluorescent dye in the other, so that we can see the flow motion inside the microchannel. The numerical and experiment results show that the stirring is significantly enhanced at larger block-height. We assert that we can apply the rapid-prototyping technology in the micro fabrication.


Author(s):  
Jia Chen ◽  
Zhaohui Yuan ◽  
Qiang Guo

A spool valve of aerospace hydraulic breaks down because of uneven pressure distribution between sleeve and spool, which is called as hydraulic lock. The rectangular grooves on the spool surface can effectively weaken the lateral force, thereby preventing the hydraulic lock. So the mathematical model of spool valve with rectangular grooves is established according to the Navier-Stokes equations based on the cylindrical coordinate system. To verify the effectivity of the mathematical model, the numerical simulation is compared and used to modified the mathematical model.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1998 ◽  
Vol 146 (1) ◽  
pp. 464-487 ◽  
Author(s):  
Jaw-Yen Yang ◽  
Shih-Chang Yang ◽  
Yih-Nan Chen ◽  
Chiang-An Hsu

Sign in / Sign up

Export Citation Format

Share Document