The determination of the total atmospheric water vapor content over the oceans using the MTVZA-GY microwave radiometer measurements

Author(s):  
Анжелика Андреевна Косторная ◽  
Алексей Николаевич Рублев ◽  
Владимир Викторович Голомолзин

Представлена методика определения интегрального влагосодержания в безоблачной атмосфере над океанскими и морскими акваториями по измерениям микроволнового радиометра МТВЗА-ГЯ, устанавливаемого на российских гидрометеорологических спутниках серии “Метеор-М”. Определение влагосодержания осуществляется с помощью регрессий, предикторами которых являются измеренные интенсивности излучения в выбранных каналах радиометра. В их число могут входить каналы с рабочими спектральными диапазонами внутри и вне полос поглощения водяного пара. Адаптивный поиск оптимального набора каналов для различных районов земного шара проводится в зависимости от типа поверхности и климатической зоны. Критерием выбора каналов и вида регрессии является минимальная среднеквадратичная невязка получаемых оценок влагосодержания атмосферы с контрольными значениями, рассчитанными по данным реанализа Национального центра экологического прогнозирования (NCEP) и специальных атмосферных моделей, разработанных в Европейском центре среднесрочных прогнозов погоды (ECMWF) The determination of the total atmospheric water vapor content over the cloudless ocean using the MTVZA-GY measurements in microwave range is described. The microwave scanning radiometer MTVZA-GY is located on the Russian meteorological satellites “Meteor-M” and outgoing radiation of the surface-atmosphere system is measured in 29 channels. To calculate the integrated water vapor, the adaptive searching of the optimal set of channels using regression analysis was proposed. Frequencies that are not related to water-vapor absorption lines are used as predictors. The minimum of total approximation error was obtained for selected channels and corresponding regression coefficients values. The quality control of retrieval integrated water vapor (kg/m) was conducted with the help of the set of atmospheric profiles obtained by M. Matricardi and NCEP/NCAR Reanalysis as a priori data using the proposed method. Standard deviations (RMS) obtained by determined adaptive search for the predictors are about 3 kg/m2. Application of the method for cloudless water areas allowed finding a set of 6 channels MTVZA GY (18.7H, 23.8V, 23.8H, 57+0.32+0.025H, 57+0.32+0.01H и 183+1.4V) for which the RMS values are minimal - 4.4 kg/m. The use of all channels of the device in the search allows reducing the error in determining the integrated water vapor content. The proposed method for recovering the content of water vapor from measurements in the channels of the MTVZA-GYa device allows an adaptive search for an optimal set of channels for different regions of the globe and find the best combinations for various climatic zones and surface types

1998 ◽  
Vol 37 (21) ◽  
pp. 4678 ◽  
Author(s):  
Victoria E. Cachorro ◽  
Pilar Utrillas ◽  
Ricardo Vergaz ◽  
Plinio Durán ◽  
Angel M. de Frutos ◽  
...  

2013 ◽  
Vol 6 (2) ◽  
pp. 3643-3674
Author(s):  
T. Wagner ◽  
S. Beirle ◽  
H. Sihler ◽  
K. Mies

Abstract. We present a new algorithm for satellite retrievals of the atmospheric water vapor column in the blue spectral range. The water vapor absorption cross section in the blue spectral range is much weaker than in the red spectral range. Thus the detection limit and the uncertainty of individual observations is systematically larger than for retrievals at longer wavelengths. Nevertheless, water vapor retrievals in the blue spectral range have also several advantages: since the surface albedo in the blue spectral range is similar over land and ocean, water vapor retrievals are more consistent than for longer wavelengths. Compared to retrievals at longer wavelengths, over ocean the sensitivity for atmospheric layers close to the surface is higher due to the (typically 2 to 3 times) higher ocean albedo in the blue. Water vapor retrievals in the blue spectral range are also possible for satellite sensors, which do not measure at longer wavelengths of the visible spectral range like the Ozone Monitoring instrument (OMI). We investigated details of the water vapor retrieval in the blue spectral range based on radiative transfer simulations and observations from the Global Ozone Monitoring Experiment 2 (GOME-2) and OMI. It is demonstrated that it is possible to retrieve the atmospheric water vapor column density in the blue spectral range over most parts of the globe. The findings of our study are of importance also for future satellite missions like e.g. Sentinel 4 and 5.


Sign in / Sign up

Export Citation Format

Share Document