scholarly journals Specific features of mathematical modeling of flows with detonation waves on unstructured computational grids

Author(s):  
А.И. Лопато ◽  
П.С. Уткин

Представлены математическая модель и вычислительный алгоритм для математического моделирования двумерных течений с волнами детонации на полностью неструктурированных расчетных сетках с треугольными ячейками. Рассмотрена задача о формировании ячеистой детонации в плоском канале для случая устойчивой детонации при различном сеточном разрешении и с использованием схем первого и второго порядков аппроксимации. A mathematical model and a numerical algorithm for the mathematical modeling of two-dimensional flows with detonation waves on fully unstructured computational grids with triangular cells are proposed. The problem concerning the formation of cellular detonation in a plane channel in the case of stable detonation for different grid resolutions and with the use of first and second order schemes is considered.

Shock Waves ◽  
1999 ◽  
Vol 9 (1) ◽  
pp. 11-17 ◽  
Author(s):  
V.N. Gamezo ◽  
D. Desbordes ◽  
E.S. Oran

Author(s):  
K. M. Akyuzlu ◽  
M. Chidurala

A two-dimensional, mathematical model is adopted to investigate the development of buoyancy driven circulation patterns and temperature stratification inside a rectangular enclosure. One of the vertical walls of the enclosure is kept at a higher temperature then the opposing vertical wall. The top and the bottom of the enclosure are assumed insulated. The physics based mathematical model for this problem consists of conservation of mass, momentum (two-dimensional, unsteady Navier-Stokes equations for turbulent compressible flows), and energy equations for the enclosed fluid subjected to appropriate boundary conditions. A standard two equation turbulence model is used to model the turbulent flow in the enclosure. The compressibility of the working fluid is represented by an ideal gas relation. The conservation equations are discretized using an implicit finite difference technique which employs second order accurate central differencing for spatial derivatives and second order (based on Taylor expansion) finite differencing for time derivatives. The linearized finite difference equations are solved using a Coupled Modified Strongly Implicit Procedure (CMSIP) for the unknowns of the problem. Numerical experiments were then carried out to simulate the development of the buoyancy driven circulation patterns inside rectangular enclosures (with aspects ratios 0.5, 1 and 1.5) filled with a compressible fluid (Pr = 0.72). Experiments were repeated for various wall temperature differences which corresponded to Rayleigh numbers between 104 and 106. Changes in unsteady circulation patterns, temperature contours, and vertical and horizontal velocity profiles were predicted while the flow inside the enclosure transferred from laminar to turbulent flow due to the sudden temperature change imposed on the vertical walls of the enclosure. Only the results of the enclosure with aspect ratio one is presented in this paper. These results indicate that this transition is characterized by unicellular circulation patterns breaking up in to multicellular formations and increase in the values of the predicted wall heat fluxes and Nusselt number as flow becomes turbulent.


Author(s):  
Ivanchuk Natalya ◽  
Sergiy Kunytskyi

A mathematical model of filtration taking into account clogging and suffusion in the bioplato filter system in the two-dimensional case was built. The constructed mathematical model takes into account the physical effects of the dynamic change of porosity and the dependence of the filtration coefficient on the concentration of contaminants, which is not in the known analogues


Author(s):  
K. M. Akyuzlu ◽  
K. Albayrak ◽  
C. Karaeren

This paper presents a mathematical model that was developed to study instabilities (primarily thermoacoustic oscillations) experienced inside a channel (with a rectangular cross section) heated symmetrically (from its top and bottom.) The heated channel is configured to simulate a combustion chamber of a rocket hybrid rocket motor and is connected to a converging–diverging nozzle in the downstream and to a plenum with a flow straightener in the upstream side. The working fluid is supplied from a pressurized storage tank to the upstream plenum through a throttle valve. A multi-component approach is used to model this test apparatus. In this integrated component model, the unsteady flow through the throttle valve and the nozzle is assumed to be one-dimensional and isentropic where as the flow in the forward plenum and the heated channel is assumed to be a two-dimensional, unsteady, compressible, turbulent, and subsonic. The physics based mathematical model of the flow in the channel consists of conservation of mass, momentum (two-dimensional Navier-Stokes) and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The working fluid is assumed to be compressible where the density of the fluid is related to the pressure and temperature of the fluid through a simple ideal gas relation. The governing equations are discretized using second order accurate central differencing for spatial derivatives and second order accurate (based on Taylor expansion) finite difference approximations for temporal derivatives. The resulting nonlinear equations are then linearized using Newton’s linearization method. The set of algebraic equations that result from this process are then put into a matrix form and solved using a Coupled Modified Strongly Implicit Procedure (CMSIP) for the unknowns (primitive variables, i.e., pressure, temperature, and the velocity field) of the problem. The turbulence model equations and the unsteady flow equation for the throttle valve are solved using a second order accurate explicit finite difference technique. Convergence and grid independence studies were done to determine the optimum mesh size and computational time increment. Furthermore, two benchmark cases (unsteady driven cavity and laminar channel flows) were simulated using the developed numerical model to verify the accuracy of the proposed solution procedure. Numerical experiments were then carried out to simulate the thermoacoustic oscillations inside rectangular channels with various aspect ratios ranging from 5 to 20 for various operating conditions (i.e., for Re numbers between 102 and 106) and to determine the flow regions where these oscillations are sustained. The numerical simulation results indicate that the mathematical model for the gas flow in the heated channel predicts the expected unsteady temperature and pressure distributions, and the velocity field, successfully. Furthermore, it is concluded that the proposed integrated component model is successful in generating the characteristics of the instabilities associated with thermal, hydrodynamic, and thermoacoustic oscillations in heated channels.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Alexander Lopato ◽  
Pavel Utkin

The work is dedicated to the numerical study of detonation wave initiation and propagation in the variable cross-section axisymmetric channel filled with the model hydrogen-air mixture. The channel models the large-scale device for the utilization of worn-out tires. Mathematical model is based on two-dimensional axisymmetric Euler equations supplemented by global chemical kinetics model. The finite volume computational algorithm of the second approximation order for the calculation of two-dimensional flows with detonation waves on fully unstructured grids with triangular cells is developed. Three geometrical configurations of the channel are investigated, each with its own degree of the divergence of the conical part of the channel from the point of view of the pressure from the detonation wave on the end wall of the channel. The problem in consideration relates to the problem of waste recycling in the devices based on the detonation combustion of the fuel.


2020 ◽  
Vol 8 (2) ◽  
pp. 44-48
Author(s):  
Viktor Kochanenko ◽  
Olga Burtseva ◽  
Maria Aleksandrova

In this paper, we show in principle a method for solving the problem of a two-dimensional vortex source in terms of flow. The material of the article relates to mathematical modeling of classical two-dimensional problems in terms of potential flows. The resulting solution is similar to the results for a flat vortex source and is an important result for the development of the analytical theory of two-dimensional in terms of potential water flows. Other solutions for real potential two-dimensional flows are considered, which are clarified by the authors, which confirms the relevance of the work.


Author(s):  
K. M. Akyuzlu ◽  
K. Hallenbeck

A numerical study is conducted to identify the unsteady characteristics of momentum and heat transfer in lid-driven cavity flows. The cavity under study is filled with a compressible fluid and is of rectangular shape. The bottom of the cavity is insulated and stationary where as the top of the cavity (the lid) is pulled at constant speed. The vertical walls of the cavity are kept at constant but unequal temperatures. A two-dimensional, mathematical model is adopted to investigate the shear and buoyancy driven circulation patterns inside this rectangular cavity. This physics based mathematical model consists of conservation of mass, momentum (two-dimensional, unsteady Navier-Stokes equations for compressible flows) and energy equations for the enclosed fluid subjected to appropriate boundary and initial conditions. The compressibility of the working fluid is represented by an ideal gas relation and its thermodynamic and transport properties are assumed to be function of temperature. The governing equations are discretized using second order accurate central differencing for spatial derivatives and second order finite differencing (based on Taylor expansion) for the time derivatives. The resulting nonlinear equations are then linearized using Newton’s linearization method. The set of algebraic equations that result from this process are then put into a matrix form and solved using a Coupled Modified Strongly Implicit Procedure (CMSIP) for the unknowns of the problem. Grid independence and time convergence studies were carried out to determine the accuracy of the square mesh adopted for the present study. Two benchmark cases (driven cavity and rectangular channel flows) were studied to verify the accuracy of the CMSIP. Numerical experiments were then carried out to simulate the unsteady development of the shear and buoyancy driven circulation patterns for different Richardson numbers in the range of 0.036<Ri<100 where the Re number is kept less than 2000 to assure laminar flow conditions inside the cavity. Simulations start with a stagnant fluid subjected to a sudden increase in one of the walls temperature. At the same time the upper lid of the cavity is accelerated, instantaneously, to a constant speed. The circulation patterns, temperature contours, vertical and horizontal velocity profiles were generated at different times of the simulation, and wall heat fluxes and Nusselt numbers were calculated for the steady state conditions. Only the results for a square cavity are presented in this paper. These results indicate that the heat transfer rates at the vertical walls of the cavity are enhanced with the decrease in Richardson number.


Sign in / Sign up

Export Citation Format

Share Document