scholarly journals Digital image reduction for analysis of topological changes in the pore space of the rock matrix during chemical dissolution

Author(s):  
Д.И. Прохоров ◽  
Я.В. Базайкин ◽  
В.В. Лисица

В работе предложен алгоритм редукции трехмерных цифровых изображений для ускорения вычисления персистентных диаграмм, характеризующих изменения в топологии порового пространства образцов горной породы. Воксели для удаления выбираются исходя из структуры своей окрестности, что позволяет редуцировать изображение за линейное время. Показано, что эффективность алгоритма существенно зависит от сложности устройства порового пространства и размеров шагов фильтрации. A new algorithm for the reduction of three-dimensional digital images is proposed to improve the performance of persistence diagrams computing. These diagrams represent changes in topology of the pore space in the rock matrix. The algorithm has a linear complexity, since the removal of the voxel is based on the structure of its neighborhood. It is shown that the efficiency of the algorithm depends heavily on the complexity of the pore space and the size of filtering steps.

2021 ◽  
Vol 136 ◽  
pp. 104171
Author(s):  
Dmitriy Prokhorov ◽  
Vadim Lisitsa ◽  
Yaroslav Bazaikin

Author(s):  
Т.С. Хачкова ◽  
Я.В. Базайкин ◽  
В.В. Лисица

Представлен алгоритм построения персистентных диаграмм для оценки изменения топологии матрицы породы при взаимодействии с химически активным флюидом. В пространстве персистентных диаграмм вводится метрика, которая позволяет выполнять их кластеризацию для количественной оценки схожести изменений топологии порового пространства в процессе растворения матрицы породы. На основе такой кластеризации показано, что одним из доминирующих параметров в процессе химического взаимодействия флюида с породой в пластовых условиях являются скорость реакции и коэффициент диффузии, в то время как скорость потока оказывает существенно меньшее влияние. A new algorithm for constructing the persistence diagrams to estimate the changes in the rock matrix topology during the chemical fluid-solid interaction. In the space of the persistence diagrams, a metric is introduced, which allows one to clusterize the diagrams in order to estimate their dissimilarities in the topology changes. This clusterization shows that the main parameters affecting the topology of the rock matrix are the reaction rate and the diffusion coefficient, whereas the fluid flow rate makes a smaller effect on the topology.


2013 ◽  
Vol 864-867 ◽  
pp. 2792-2798
Author(s):  
Yun Cai ◽  
Hao Li ◽  
Ming Fei Wu ◽  
Biao Yang

In view of the lack of high-precision and high-resolution texture information of three-dimensional laser point cloud, this paper proposes a fusion method of three-dimensional laser point cloud and high-resolution digital images. Firstly the point cloud is transformed to the spherical image of laser intensity by projection. Then the rigorous projection transformation relation between the external digital image and three-dimensional point cloud is constructed easily through spherical image and feature information. Finally the color information of the point cloud is given by digital images. The experiment indicates that the novel method is able to avoid the layout difficulty of control points in the field and operating the three-dimensional data of indoor work, and meanwhile achieve the control of geometric accuracy.


2021 ◽  
Vol 2 (2) ◽  
pp. 251-257
Author(s):  
Dmitriy I. Prokhorov ◽  
Vadim V. Lisitsa ◽  
Yaroslav V. Bazaikin

The article describes the application of the digital image reduction algorithm to speed up the calculation of persistent diagrams that describe changes in the topology of the pore space of the rock matrix during the dissolution process. The dependence of the efficiency of the reduction algorithm on the properties of the rock sample and the value of the discrete time step is shown.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 274 ◽  
Author(s):  
Fawad Masood ◽  
Jawad Ahmad ◽  
Syed Aziz Shah ◽  
Sajjad Shaukat Jamal ◽  
Iqtadar Hussain

Chaos-based encryption schemes have attracted many researchers around the world in the digital image security domain. Digital images can be secured using existing chaotic maps, multiple chaotic maps, and several other hybrid dynamic systems that enhance the non-linearity of digital images. The combined property of confusion and diffusion was introduced by Claude Shannon which can be employed for digital image security. In this paper, we proposed a novel system that is computationally less expensive and provided a higher level of security. The system is based on a shuffling process with fractals key along with three-dimensional Lorenz chaotic map. The shuffling process added the confusion property and the pixels of the standard image is shuffled. Three-dimensional Lorenz chaotic map is used for a diffusion process which distorted all pixels of the image. In the statistical security test, means square error (MSE) evaluated error value was greater than the average value of 10000 for all standard images. The value of peak signal to noise (PSNR) was 7.69(dB) for the test image. Moreover, the calculated correlation coefficient values for each direction of the encrypted images was less than zero with a number of pixel change rate (NPCR) higher than 99%. During the security test, the entropy values were more than 7.9 for each grey channel which is almost equal to the ideal value of 8 for an 8-bit system. Numerous security tests and low computational complexity tests validate the security, robustness, and real-time implementation of the presented scheme.


Author(s):  
D. P. Gangwar ◽  
Anju Pathania

This work presents a robust analysis of digital images to detect the modifications/ morphing/ editing signs by using the image’s exif metadata, thumbnail, camera traces, image markers, Huffman codec and Markers, Compression signatures etc. properties. The details of the whole methodology and findings are described in the present work. The main advantage of the methodology is that the whole analysis has been done by using software/tools which are easily available in open sources.


Author(s):  
Lemcia Hutajulu ◽  
Hery Sunandar ◽  
Imam Saputra

Cryptography is used to protect the contents of information from anyone except those who have the authority or secret key to open information that has been encoded. Along with the development of technology and computers, the increase in computer crime has also increased, especially in image manipulation. There are many ways that people use to manipulate images that have a detrimental effect on others. The originality of a digital image is the authenticity of the image in terms of colors, shapes, objects and information without the slightest change from the other party. Nowadays many digital images circulating on the internet have been manipulated and even images have been used for material fraud in the competition, so we need a method that can detect the image is genuine or fake. In this study, the authors used the MD4 and SHA-384 methods to detect the originality of digital images, by using this method an image of doubtful authenticity can be found out that the image is authentic or fake.Keywords: Originality, Image, MD4 and SHA-384


2021 ◽  
Vol 10 (2) ◽  
pp. 85
Author(s):  
Juan Reinoso-Gordo ◽  
Antonio Gámiz-Gordo ◽  
Pedro Barrero-Ortega

Suitable graphic documentation is essential to ascertain and conserve architectural heritage. For the first time, accurate digital images are provided of a 16th-century wooden ceiling, composed of geometric interlacing patterns, in the Pinelo Palace in Seville. Today, this ceiling suffers from significant deformation. Although there are many publications on the digital documentation of architectural heritage, no graphic studies on this type of deformed ceilings have been presented. This study starts by providing data on the palace history concerning the design of geometric interlacing patterns in carpentry according to the 1633 book by López de Arenas, and on the ceiling consolidation in the 20th century. Images were then obtained using two complementary procedures: from a 3D laser scanner, which offers metric data on deformations; and from photogrammetry, which facilitates the visualisation of details. In this way, this type of heritage is documented in an innovative graphic approach, which is essential for its conservation and/or restoration with scientific foundations and also to disseminate a reliable digital image of the most beautiful ceiling of this Renaissance palace in southern Europe.


2020 ◽  
Vol 30 (1) ◽  
pp. 240-257
Author(s):  
Akula Suneetha ◽  
E. Srinivasa Reddy

Abstract In the data collection phase, the digital images are captured using sensors that often contaminated by noise (undesired random signal). In digital image processing task, enhancing the image quality and reducing the noise is a central process. Image denoising effectively preserves the image edges to a higher extend in the flat regions. Several adaptive filters (median filter, Gaussian filter, fuzzy filter, etc.) have been utilized to improve the smoothness of digital image, but these filters failed to preserve the image edges while removing noise. In this paper, a modified fuzzy set filter has been proposed to eliminate noise for restoring the digital image. Usually in fuzzy set filter, sixteen fuzzy rules are generated to find the noisy pixels in the digital image. In modified fuzzy set filter, a set of twenty-four fuzzy rules are generated with additional four pixel locations for determining the noisy pixels in the digital image. The additional eight fuzzy rules ease the process of finding the image pixels,whether it required averaging or not. In this scenario, the input digital images were collected from the underwater photography fish dataset. The efficiency of the modified fuzzy set filter was evaluated by varying degrees of Gaussian noise (0.01, 0.03, and 0.1 levels of Gaussian noise). For performance evaluation, Structural Similarity (SSIM), Mean Structural Similarity (MSSIM), Mean Square Error (MSE), Normalized Mean Square Error (NMSE), Universal Image Quality Index (UIQI), Peak Signal to Noise Ratio (PSNR), and Visual Information Fidelity (VIF) were used. The experimental results showed that the modified fuzzy set filter improved PSNR value up to 2-3 dB, MSSIM up to 0.12-0.03, and NMSE value up to 0.38-0.1 compared to the traditional filtering techniques.


Sign in / Sign up

Export Citation Format

Share Document